| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
| 2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
| 3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
| 4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
| 5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
| 6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
| 7 |
|
scmatghm.s |
|- S = ( A |`s C ) |
| 8 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 9 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 10 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 11 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 12 |
11
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Grp ) |
| 13 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 14 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 15 |
2 13 1 14 6
|
scmatsgrp |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubGrp ` A ) ) |
| 16 |
7
|
subggrp |
|- ( C e. ( SubGrp ` A ) -> S e. Grp ) |
| 17 |
15 16
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. Grp ) |
| 18 |
1 2 3 4 5 6
|
scmatf |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) |
| 19 |
2 6 7
|
scmatstrbas |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) |
| 20 |
19
|
feq3d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F : K --> ( Base ` S ) <-> F : K --> C ) ) |
| 21 |
18 20
|
mpbird |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> ( Base ` S ) ) |
| 22 |
2
|
matsca2 |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
| 23 |
6
|
ovexi |
|- C e. _V |
| 24 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
| 25 |
7 24
|
resssca |
|- ( C e. _V -> ( Scalar ` A ) = ( Scalar ` S ) ) |
| 26 |
23 25
|
mp1i |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` A ) = ( Scalar ` S ) ) |
| 27 |
22 26
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` S ) ) |
| 28 |
27
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( +g ` R ) = ( +g ` ( Scalar ` S ) ) ) |
| 29 |
28
|
oveqd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( y ( +g ` R ) z ) = ( y ( +g ` ( Scalar ` S ) ) z ) ) |
| 30 |
29
|
oveq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( y ( +g ` R ) z ) .* .1. ) = ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) ) |
| 31 |
30
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( +g ` R ) z ) .* .1. ) = ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) ) |
| 32 |
2
|
matlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
| 33 |
2 6
|
scmatlss |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( LSubSp ` A ) ) |
| 34 |
|
eqid |
|- ( LSubSp ` A ) = ( LSubSp ` A ) |
| 35 |
7 34
|
lsslmod |
|- ( ( A e. LMod /\ C e. ( LSubSp ` A ) ) -> S e. LMod ) |
| 36 |
32 33 35
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. LMod ) |
| 37 |
36
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> S e. LMod ) |
| 38 |
27
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) |
| 39 |
1 38
|
eqtrid |
|- ( ( N e. Fin /\ R e. Ring ) -> K = ( Base ` ( Scalar ` S ) ) ) |
| 40 |
39
|
eleq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( y e. K <-> y e. ( Base ` ( Scalar ` S ) ) ) ) |
| 41 |
40
|
biimpd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( y e. K -> y e. ( Base ` ( Scalar ` S ) ) ) ) |
| 42 |
41
|
adantrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( y e. K /\ z e. K ) -> y e. ( Base ` ( Scalar ` S ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> y e. ( Base ` ( Scalar ` S ) ) ) |
| 44 |
39
|
eleq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( z e. K <-> z e. ( Base ` ( Scalar ` S ) ) ) ) |
| 45 |
44
|
biimpd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( z e. K -> z e. ( Base ` ( Scalar ` S ) ) ) ) |
| 46 |
45
|
adantld |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( y e. K /\ z e. K ) -> z e. ( Base ` ( Scalar ` S ) ) ) ) |
| 47 |
46
|
imp |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> z e. ( Base ` ( Scalar ` S ) ) ) |
| 48 |
2 13 1 14 6
|
scmatid |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. C ) |
| 49 |
3
|
a1i |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. = ( 1r ` A ) ) |
| 50 |
48 49 19
|
3eltr4d |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` S ) ) |
| 51 |
50
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> .1. e. ( Base ` S ) ) |
| 52 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
| 53 |
7 4
|
ressvsca |
|- ( C e. _V -> .* = ( .s ` S ) ) |
| 54 |
23 53
|
ax-mp |
|- .* = ( .s ` S ) |
| 55 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
| 56 |
|
eqid |
|- ( +g ` ( Scalar ` S ) ) = ( +g ` ( Scalar ` S ) ) |
| 57 |
8 10 52 54 55 56
|
lmodvsdir |
|- ( ( S e. LMod /\ ( y e. ( Base ` ( Scalar ` S ) ) /\ z e. ( Base ` ( Scalar ` S ) ) /\ .1. e. ( Base ` S ) ) ) -> ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) |
| 58 |
37 43 47 51 57
|
syl13anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) |
| 59 |
31 58
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( +g ` R ) z ) .* .1. ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) |
| 60 |
|
simpr |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
| 61 |
60
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> R e. Ring ) |
| 62 |
60
|
anim1i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) |
| 63 |
|
3anass |
|- ( ( R e. Ring /\ y e. K /\ z e. K ) <-> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) |
| 64 |
62 63
|
sylibr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ y e. K /\ z e. K ) ) |
| 65 |
1 9
|
ringacl |
|- ( ( R e. Ring /\ y e. K /\ z e. K ) -> ( y ( +g ` R ) z ) e. K ) |
| 66 |
64 65
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( y ( +g ` R ) z ) e. K ) |
| 67 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ ( y ( +g ` R ) z ) e. K ) -> ( F ` ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) .* .1. ) ) |
| 68 |
61 66 67
|
syl2anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) .* .1. ) ) |
| 69 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ y e. K ) -> ( F ` y ) = ( y .* .1. ) ) |
| 70 |
69
|
ad2ant2lr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` y ) = ( y .* .1. ) ) |
| 71 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ z e. K ) -> ( F ` z ) = ( z .* .1. ) ) |
| 72 |
71
|
ad2ant2l |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` z ) = ( z .* .1. ) ) |
| 73 |
70 72
|
oveq12d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( F ` y ) ( +g ` S ) ( F ` z ) ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) |
| 74 |
59 68 73
|
3eqtr4d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( +g ` R ) z ) ) = ( ( F ` y ) ( +g ` S ) ( F ` z ) ) ) |
| 75 |
1 8 9 10 12 17 21 74
|
isghmd |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( R GrpHom S ) ) |