| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 |  | scmatghm.s |  |-  S = ( A |`s C ) | 
						
							| 8 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 9 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 10 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 11 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 12 | 11 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Grp ) | 
						
							| 13 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 15 | 2 13 1 14 6 | scmatsgrp |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubGrp ` A ) ) | 
						
							| 16 | 7 | subggrp |  |-  ( C e. ( SubGrp ` A ) -> S e. Grp ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. Grp ) | 
						
							| 18 | 1 2 3 4 5 6 | scmatf |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) | 
						
							| 19 | 2 6 7 | scmatstrbas |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) | 
						
							| 20 | 19 | feq3d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F : K --> ( Base ` S ) <-> F : K --> C ) ) | 
						
							| 21 | 18 20 | mpbird |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> ( Base ` S ) ) | 
						
							| 22 | 2 | matsca2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) | 
						
							| 23 | 6 | ovexi |  |-  C e. _V | 
						
							| 24 |  | eqid |  |-  ( Scalar ` A ) = ( Scalar ` A ) | 
						
							| 25 | 7 24 | resssca |  |-  ( C e. _V -> ( Scalar ` A ) = ( Scalar ` S ) ) | 
						
							| 26 | 23 25 | mp1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` A ) = ( Scalar ` S ) ) | 
						
							| 27 | 22 26 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` S ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( +g ` R ) = ( +g ` ( Scalar ` S ) ) ) | 
						
							| 29 | 28 | oveqd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( y ( +g ` R ) z ) = ( y ( +g ` ( Scalar ` S ) ) z ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( y ( +g ` R ) z ) .* .1. ) = ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( +g ` R ) z ) .* .1. ) = ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) ) | 
						
							| 32 | 2 | matlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) | 
						
							| 33 | 2 6 | scmatlss |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( LSubSp ` A ) ) | 
						
							| 34 |  | eqid |  |-  ( LSubSp ` A ) = ( LSubSp ` A ) | 
						
							| 35 | 7 34 | lsslmod |  |-  ( ( A e. LMod /\ C e. ( LSubSp ` A ) ) -> S e. LMod ) | 
						
							| 36 | 32 33 35 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. LMod ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> S e. LMod ) | 
						
							| 38 | 27 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 39 | 1 38 | eqtrid |  |-  ( ( N e. Fin /\ R e. Ring ) -> K = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 40 | 39 | eleq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( y e. K <-> y e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 41 | 40 | biimpd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( y e. K -> y e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 42 | 41 | adantrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( y e. K /\ z e. K ) -> y e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> y e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 44 | 39 | eleq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( z e. K <-> z e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 45 | 44 | biimpd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( z e. K -> z e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 46 | 45 | adantld |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( y e. K /\ z e. K ) -> z e. ( Base ` ( Scalar ` S ) ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> z e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 48 | 2 13 1 14 6 | scmatid |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. C ) | 
						
							| 49 | 3 | a1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. = ( 1r ` A ) ) | 
						
							| 50 | 48 49 19 | 3eltr4d |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` S ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> .1. e. ( Base ` S ) ) | 
						
							| 52 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 53 | 7 4 | ressvsca |  |-  ( C e. _V -> .* = ( .s ` S ) ) | 
						
							| 54 | 23 53 | ax-mp |  |-  .* = ( .s ` S ) | 
						
							| 55 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 56 |  | eqid |  |-  ( +g ` ( Scalar ` S ) ) = ( +g ` ( Scalar ` S ) ) | 
						
							| 57 | 8 10 52 54 55 56 | lmodvsdir |  |-  ( ( S e. LMod /\ ( y e. ( Base ` ( Scalar ` S ) ) /\ z e. ( Base ` ( Scalar ` S ) ) /\ .1. e. ( Base ` S ) ) ) -> ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) | 
						
							| 58 | 37 43 47 51 57 | syl13anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( +g ` ( Scalar ` S ) ) z ) .* .1. ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) | 
						
							| 59 | 31 58 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( +g ` R ) z ) .* .1. ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) | 
						
							| 60 |  | simpr |  |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> R e. Ring ) | 
						
							| 62 | 60 | anim1i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) | 
						
							| 63 |  | 3anass |  |-  ( ( R e. Ring /\ y e. K /\ z e. K ) <-> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) | 
						
							| 64 | 62 63 | sylibr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ y e. K /\ z e. K ) ) | 
						
							| 65 | 1 9 | ringacl |  |-  ( ( R e. Ring /\ y e. K /\ z e. K ) -> ( y ( +g ` R ) z ) e. K ) | 
						
							| 66 | 64 65 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( y ( +g ` R ) z ) e. K ) | 
						
							| 67 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ ( y ( +g ` R ) z ) e. K ) -> ( F ` ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) .* .1. ) ) | 
						
							| 68 | 61 66 67 | syl2anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) .* .1. ) ) | 
						
							| 69 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ y e. K ) -> ( F ` y ) = ( y .* .1. ) ) | 
						
							| 70 | 69 | ad2ant2lr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` y ) = ( y .* .1. ) ) | 
						
							| 71 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ z e. K ) -> ( F ` z ) = ( z .* .1. ) ) | 
						
							| 72 | 71 | ad2ant2l |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` z ) = ( z .* .1. ) ) | 
						
							| 73 | 70 72 | oveq12d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( F ` y ) ( +g ` S ) ( F ` z ) ) = ( ( y .* .1. ) ( +g ` S ) ( z .* .1. ) ) ) | 
						
							| 74 | 59 68 73 | 3eqtr4d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( +g ` R ) z ) ) = ( ( F ` y ) ( +g ` S ) ( F ` z ) ) ) | 
						
							| 75 | 1 8 9 10 12 17 21 74 | isghmd |  |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( R GrpHom S ) ) |