| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatlss.a |
|- A = ( N Mat R ) |
| 2 |
|
scmatlss.s |
|- S = ( N ScMat R ) |
| 3 |
1
|
matsca2 |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
| 4 |
|
eqidd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` R ) = ( Base ` R ) ) |
| 5 |
|
eqidd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` A ) = ( Base ` A ) ) |
| 6 |
|
eqidd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( +g ` A ) = ( +g ` A ) ) |
| 7 |
|
eqidd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( .s ` A ) = ( .s ` A ) ) |
| 8 |
|
eqidd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( LSubSp ` A ) = ( LSubSp ` A ) ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 11 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
| 12 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
| 13 |
9 1 10 11 12 2
|
scmatval |
|- ( ( N e. Fin /\ R e. Ring ) -> S = { m e. ( Base ` A ) | E. c e. ( Base ` R ) m = ( c ( .s ` A ) ( 1r ` A ) ) } ) |
| 14 |
|
ssrab2 |
|- { m e. ( Base ` A ) | E. c e. ( Base ` R ) m = ( c ( .s ` A ) ( 1r ` A ) ) } C_ ( Base ` A ) |
| 15 |
13 14
|
eqsstrdi |
|- ( ( N e. Fin /\ R e. Ring ) -> S C_ ( Base ` A ) ) |
| 16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 17 |
1 10 9 16 2
|
scmatid |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S ) |
| 18 |
17
|
ne0d |
|- ( ( N e. Fin /\ R e. Ring ) -> S =/= (/) ) |
| 19 |
9 1 2 12
|
smatvscl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S ) ) -> ( a ( .s ` A ) x ) e. S ) |
| 20 |
19
|
3adantr3 |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> ( a ( .s ` A ) x ) e. S ) |
| 21 |
|
simpr3 |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> y e. S ) |
| 22 |
20 21
|
jca |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> ( ( a ( .s ` A ) x ) e. S /\ y e. S ) ) |
| 23 |
1 10 9 16 2
|
scmataddcl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( ( a ( .s ` A ) x ) e. S /\ y e. S ) ) -> ( ( a ( .s ` A ) x ) ( +g ` A ) y ) e. S ) |
| 24 |
22 23
|
syldan |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> ( ( a ( .s ` A ) x ) ( +g ` A ) y ) e. S ) |
| 25 |
3 4 5 6 7 8 15 18 24
|
islssd |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( LSubSp ` A ) ) |