| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatlss.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | scmatlss.s |  |-  S = ( N ScMat R ) | 
						
							| 3 | 1 | matsca2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) | 
						
							| 4 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` R ) = ( Base ` R ) ) | 
						
							| 5 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` A ) = ( Base ` A ) ) | 
						
							| 6 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( +g ` A ) = ( +g ` A ) ) | 
						
							| 7 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( .s ` A ) = ( .s ` A ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( LSubSp ` A ) = ( LSubSp ` A ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 12 |  | eqid |  |-  ( .s ` A ) = ( .s ` A ) | 
						
							| 13 | 9 1 10 11 12 2 | scmatval |  |-  ( ( N e. Fin /\ R e. Ring ) -> S = { m e. ( Base ` A ) | E. c e. ( Base ` R ) m = ( c ( .s ` A ) ( 1r ` A ) ) } ) | 
						
							| 14 |  | ssrab2 |  |-  { m e. ( Base ` A ) | E. c e. ( Base ` R ) m = ( c ( .s ` A ) ( 1r ` A ) ) } C_ ( Base ` A ) | 
						
							| 15 | 13 14 | eqsstrdi |  |-  ( ( N e. Fin /\ R e. Ring ) -> S C_ ( Base ` A ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 17 | 1 10 9 16 2 | scmatid |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) e. S ) | 
						
							| 18 | 17 | ne0d |  |-  ( ( N e. Fin /\ R e. Ring ) -> S =/= (/) ) | 
						
							| 19 | 9 1 2 12 | smatvscl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S ) ) -> ( a ( .s ` A ) x ) e. S ) | 
						
							| 20 | 19 | 3adantr3 |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> ( a ( .s ` A ) x ) e. S ) | 
						
							| 21 |  | simpr3 |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> y e. S ) | 
						
							| 22 | 20 21 | jca |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> ( ( a ( .s ` A ) x ) e. S /\ y e. S ) ) | 
						
							| 23 | 1 10 9 16 2 | scmataddcl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( ( a ( .s ` A ) x ) e. S /\ y e. S ) ) -> ( ( a ( .s ` A ) x ) ( +g ` A ) y ) e. S ) | 
						
							| 24 | 22 23 | syldan |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( a e. ( Base ` R ) /\ x e. S /\ y e. S ) ) -> ( ( a ( .s ` A ) x ) ( +g ` A ) y ) e. S ) | 
						
							| 25 | 3 4 5 6 7 8 15 18 24 | islssd |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( LSubSp ` A ) ) |