| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatlss.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | scmatlss.s | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 3 | 1 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 4 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( +g ‘ 𝐴 )  =  ( +g ‘ 𝐴 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( LSubSp ‘ 𝐴 )  =  ( LSubSp ‘ 𝐴 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 12 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 13 | 9 1 10 11 12 2 | scmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  =  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) } ) | 
						
							| 14 |  | ssrab2 | ⊢ { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) 𝑚  =  ( 𝑐 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) }  ⊆  ( Base ‘ 𝐴 ) | 
						
							| 15 | 13 14 | eqsstrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ⊆  ( Base ‘ 𝐴 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 17 | 1 10 9 16 2 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 ) | 
						
							| 18 | 17 | ne0d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ≠  ∅ ) | 
						
							| 19 | 9 1 2 12 | smatvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  𝑆 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝐴 ) 𝑥 )  ∈  𝑆 ) | 
						
							| 20 | 19 | 3adantr3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝐴 ) 𝑥 )  ∈  𝑆 ) | 
						
							| 21 |  | simpr3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 22 | 20 21 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝐴 ) 𝑥 )  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) ) | 
						
							| 23 | 1 10 9 16 2 | scmataddcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝑎 (  ·𝑠  ‘ 𝐴 ) 𝑥 )  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝐴 ) 𝑥 ) ( +g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 24 | 22 23 | syldan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝐴 ) 𝑥 ) ( +g ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 25 | 3 4 5 6 7 8 15 18 24 | islssd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( LSubSp ‘ 𝐴 ) ) |