Metamath Proof Explorer


Theorem scmatghm

Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of scalar matrices over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
scmatghm.s S = A 𝑠 C
Assertion scmatghm N Fin R Ring F R GrpHom S

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 scmatghm.s S = A 𝑠 C
8 eqid Base S = Base S
9 eqid + R = + R
10 eqid + S = + S
11 ringgrp R Ring R Grp
12 11 adantl N Fin R Ring R Grp
13 eqid Base A = Base A
14 eqid 0 R = 0 R
15 2 13 1 14 6 scmatsgrp N Fin R Ring C SubGrp A
16 7 subggrp C SubGrp A S Grp
17 15 16 syl N Fin R Ring S Grp
18 1 2 3 4 5 6 scmatf N Fin R Ring F : K C
19 2 6 7 scmatstrbas N Fin R Ring Base S = C
20 19 feq3d N Fin R Ring F : K Base S F : K C
21 18 20 mpbird N Fin R Ring F : K Base S
22 2 matsca2 N Fin R Ring R = Scalar A
23 6 ovexi C V
24 eqid Scalar A = Scalar A
25 7 24 resssca C V Scalar A = Scalar S
26 23 25 mp1i N Fin R Ring Scalar A = Scalar S
27 22 26 eqtrd N Fin R Ring R = Scalar S
28 27 fveq2d N Fin R Ring + R = + Scalar S
29 28 oveqd N Fin R Ring y + R z = y + Scalar S z
30 29 oveq1d N Fin R Ring y + R z ˙ 1 ˙ = y + Scalar S z ˙ 1 ˙
31 30 adantr N Fin R Ring y K z K y + R z ˙ 1 ˙ = y + Scalar S z ˙ 1 ˙
32 2 matlmod N Fin R Ring A LMod
33 2 6 scmatlss N Fin R Ring C LSubSp A
34 eqid LSubSp A = LSubSp A
35 7 34 lsslmod A LMod C LSubSp A S LMod
36 32 33 35 syl2anc N Fin R Ring S LMod
37 36 adantr N Fin R Ring y K z K S LMod
38 27 fveq2d N Fin R Ring Base R = Base Scalar S
39 1 38 eqtrid N Fin R Ring K = Base Scalar S
40 39 eleq2d N Fin R Ring y K y Base Scalar S
41 40 biimpd N Fin R Ring y K y Base Scalar S
42 41 adantrd N Fin R Ring y K z K y Base Scalar S
43 42 imp N Fin R Ring y K z K y Base Scalar S
44 39 eleq2d N Fin R Ring z K z Base Scalar S
45 44 biimpd N Fin R Ring z K z Base Scalar S
46 45 adantld N Fin R Ring y K z K z Base Scalar S
47 46 imp N Fin R Ring y K z K z Base Scalar S
48 2 13 1 14 6 scmatid N Fin R Ring 1 A C
49 3 a1i N Fin R Ring 1 ˙ = 1 A
50 48 49 19 3eltr4d N Fin R Ring 1 ˙ Base S
51 50 adantr N Fin R Ring y K z K 1 ˙ Base S
52 eqid Scalar S = Scalar S
53 7 4 ressvsca C V ˙ = S
54 23 53 ax-mp ˙ = S
55 eqid Base Scalar S = Base Scalar S
56 eqid + Scalar S = + Scalar S
57 8 10 52 54 55 56 lmodvsdir S LMod y Base Scalar S z Base Scalar S 1 ˙ Base S y + Scalar S z ˙ 1 ˙ = y ˙ 1 ˙ + S z ˙ 1 ˙
58 37 43 47 51 57 syl13anc N Fin R Ring y K z K y + Scalar S z ˙ 1 ˙ = y ˙ 1 ˙ + S z ˙ 1 ˙
59 31 58 eqtrd N Fin R Ring y K z K y + R z ˙ 1 ˙ = y ˙ 1 ˙ + S z ˙ 1 ˙
60 simpr N Fin R Ring R Ring
61 60 adantr N Fin R Ring y K z K R Ring
62 60 anim1i N Fin R Ring y K z K R Ring y K z K
63 3anass R Ring y K z K R Ring y K z K
64 62 63 sylibr N Fin R Ring y K z K R Ring y K z K
65 1 9 ringacl R Ring y K z K y + R z K
66 64 65 syl N Fin R Ring y K z K y + R z K
67 1 2 3 4 5 scmatrhmval R Ring y + R z K F y + R z = y + R z ˙ 1 ˙
68 61 66 67 syl2anc N Fin R Ring y K z K F y + R z = y + R z ˙ 1 ˙
69 1 2 3 4 5 scmatrhmval R Ring y K F y = y ˙ 1 ˙
70 69 ad2ant2lr N Fin R Ring y K z K F y = y ˙ 1 ˙
71 1 2 3 4 5 scmatrhmval R Ring z K F z = z ˙ 1 ˙
72 71 ad2ant2l N Fin R Ring y K z K F z = z ˙ 1 ˙
73 70 72 oveq12d N Fin R Ring y K z K F y + S F z = y ˙ 1 ˙ + S z ˙ 1 ˙
74 59 68 73 3eqtr4d N Fin R Ring y K z K F y + R z = F y + S F z
75 1 8 9 10 12 17 21 74 isghmd N Fin R Ring F R GrpHom S