| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|- K = ( Base ` R ) |
| 2 |
|
scmatrhmval.a |
|- A = ( N Mat R ) |
| 3 |
|
scmatrhmval.o |
|- .1. = ( 1r ` A ) |
| 4 |
|
scmatrhmval.t |
|- .* = ( .s ` A ) |
| 5 |
|
scmatrhmval.f |
|- F = ( x e. K |-> ( x .* .1. ) ) |
| 6 |
|
scmatrhmval.c |
|- C = ( N ScMat R ) |
| 7 |
|
scmatghm.s |
|- S = ( A |`s C ) |
| 8 |
|
scmatmhm.m |
|- M = ( mulGrp ` R ) |
| 9 |
|
scmatmhm.t |
|- T = ( mulGrp ` S ) |
| 10 |
8
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
| 11 |
10
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> M e. Mnd ) |
| 12 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 13 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 14 |
2 12 1 13 6
|
scmatsrng |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) |
| 15 |
7
|
subrgring |
|- ( C e. ( SubRing ` A ) -> S e. Ring ) |
| 16 |
9
|
ringmgp |
|- ( S e. Ring -> T e. Mnd ) |
| 17 |
14 15 16
|
3syl |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. Mnd ) |
| 18 |
1 2 3 4 5 6
|
scmatf |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) |
| 19 |
2 6 7
|
scmatstrbas |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) |
| 20 |
19
|
feq3d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F : K --> ( Base ` S ) <-> F : K --> C ) ) |
| 21 |
18 20
|
mpbird |
|- ( ( N e. Fin /\ R e. Ring ) -> F : K --> ( Base ` S ) ) |
| 22 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 23 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
| 24 |
2 1 13 3 4 22 23
|
scmatscmiddistr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y .* .1. ) ( .r ` A ) ( z .* .1. ) ) = ( ( y ( .r ` R ) z ) .* .1. ) ) |
| 25 |
7 23
|
ressmulr |
|- ( C e. ( SubRing ` A ) -> ( .r ` A ) = ( .r ` S ) ) |
| 26 |
14 25
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( .r ` A ) = ( .r ` S ) ) |
| 27 |
26
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( .r ` A ) = ( .r ` S ) ) |
| 28 |
27
|
oveqd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y .* .1. ) ( .r ` A ) ( z .* .1. ) ) = ( ( y .* .1. ) ( .r ` S ) ( z .* .1. ) ) ) |
| 29 |
24 28
|
eqtr3d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( .r ` R ) z ) .* .1. ) = ( ( y .* .1. ) ( .r ` S ) ( z .* .1. ) ) ) |
| 30 |
|
simpr |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
| 31 |
30
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> R e. Ring ) |
| 32 |
30
|
anim1i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) |
| 33 |
|
3anass |
|- ( ( R e. Ring /\ y e. K /\ z e. K ) <-> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) |
| 34 |
32 33
|
sylibr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ y e. K /\ z e. K ) ) |
| 35 |
1 22
|
ringcl |
|- ( ( R e. Ring /\ y e. K /\ z e. K ) -> ( y ( .r ` R ) z ) e. K ) |
| 36 |
34 35
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( y ( .r ` R ) z ) e. K ) |
| 37 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ ( y ( .r ` R ) z ) e. K ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( y ( .r ` R ) z ) .* .1. ) ) |
| 38 |
31 36 37
|
syl2anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( y ( .r ` R ) z ) .* .1. ) ) |
| 39 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ y e. K ) -> ( F ` y ) = ( y .* .1. ) ) |
| 40 |
39
|
ad2ant2lr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` y ) = ( y .* .1. ) ) |
| 41 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ z e. K ) -> ( F ` z ) = ( z .* .1. ) ) |
| 42 |
41
|
ad2ant2l |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` z ) = ( z .* .1. ) ) |
| 43 |
40 42
|
oveq12d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( F ` y ) ( .r ` S ) ( F ` z ) ) = ( ( y .* .1. ) ( .r ` S ) ( z .* .1. ) ) ) |
| 44 |
29 38 43
|
3eqtr4d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) ) |
| 45 |
44
|
ralrimivva |
|- ( ( N e. Fin /\ R e. Ring ) -> A. y e. K A. z e. K ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) ) |
| 46 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 47 |
1 46
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. K ) |
| 48 |
1 2 3 4 5
|
scmatrhmval |
|- ( ( R e. Ring /\ ( 1r ` R ) e. K ) -> ( F ` ( 1r ` R ) ) = ( ( 1r ` R ) .* .1. ) ) |
| 49 |
30 47 48
|
syl2anc2 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F ` ( 1r ` R ) ) = ( ( 1r ` R ) .* .1. ) ) |
| 50 |
2
|
matsca2 |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
| 51 |
50
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` R ) = ( 1r ` ( Scalar ` A ) ) ) |
| 52 |
51
|
oveq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` R ) .* .1. ) = ( ( 1r ` ( Scalar ` A ) ) .* .1. ) ) |
| 53 |
2
|
matlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
| 54 |
2
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 55 |
12 3
|
ringidcl |
|- ( A e. Ring -> .1. e. ( Base ` A ) ) |
| 56 |
54 55
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` A ) ) |
| 57 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
| 58 |
|
eqid |
|- ( 1r ` ( Scalar ` A ) ) = ( 1r ` ( Scalar ` A ) ) |
| 59 |
12 57 4 58
|
lmodvs1 |
|- ( ( A e. LMod /\ .1. e. ( Base ` A ) ) -> ( ( 1r ` ( Scalar ` A ) ) .* .1. ) = .1. ) |
| 60 |
53 56 59
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` A ) ) .* .1. ) = .1. ) |
| 61 |
52 60
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` R ) .* .1. ) = .1. ) |
| 62 |
49 61
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F ` ( 1r ` R ) ) = .1. ) |
| 63 |
7 3
|
subrg1 |
|- ( C e. ( SubRing ` A ) -> .1. = ( 1r ` S ) ) |
| 64 |
14 63
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. = ( 1r ` S ) ) |
| 65 |
62 64
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 66 |
21 45 65
|
3jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( F : K --> ( Base ` S ) /\ A. y e. K A. z e. K ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) /\ ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) ) |
| 67 |
8 1
|
mgpbas |
|- K = ( Base ` M ) |
| 68 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 69 |
9 68
|
mgpbas |
|- ( Base ` S ) = ( Base ` T ) |
| 70 |
8 22
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
| 71 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 72 |
9 71
|
mgpplusg |
|- ( .r ` S ) = ( +g ` T ) |
| 73 |
8 46
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
| 74 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 75 |
9 74
|
ringidval |
|- ( 1r ` S ) = ( 0g ` T ) |
| 76 |
67 69 70 72 73 75
|
ismhm |
|- ( F e. ( M MndHom T ) <-> ( ( M e. Mnd /\ T e. Mnd ) /\ ( F : K --> ( Base ` S ) /\ A. y e. K A. z e. K ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) /\ ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) ) ) |
| 77 |
11 17 66 76
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> F e. ( M MndHom T ) ) |