| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | scmatrhmval.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | scmatrhmval.o |  |-  .1. = ( 1r ` A ) | 
						
							| 4 |  | scmatrhmval.t |  |-  .* = ( .s ` A ) | 
						
							| 5 |  | scmatrhmval.f |  |-  F = ( x e. K |-> ( x .* .1. ) ) | 
						
							| 6 |  | scmatrhmval.c |  |-  C = ( N ScMat R ) | 
						
							| 7 |  | scmatghm.s |  |-  S = ( A |`s C ) | 
						
							| 8 |  | scmatmhm.m |  |-  M = ( mulGrp ` R ) | 
						
							| 9 |  | scmatmhm.t |  |-  T = ( mulGrp ` S ) | 
						
							| 10 | 8 | ringmgp |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 11 | 10 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> M e. Mnd ) | 
						
							| 12 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 13 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 14 | 2 12 1 13 6 | scmatsrng |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) | 
						
							| 15 | 7 | subrgring |  |-  ( C e. ( SubRing ` A ) -> S e. Ring ) | 
						
							| 16 | 9 | ringmgp |  |-  ( S e. Ring -> T e. Mnd ) | 
						
							| 17 | 14 15 16 | 3syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. Mnd ) | 
						
							| 18 | 1 2 3 4 5 6 | scmatf |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> C ) | 
						
							| 19 | 2 6 7 | scmatstrbas |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) | 
						
							| 20 | 19 | feq3d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F : K --> ( Base ` S ) <-> F : K --> C ) ) | 
						
							| 21 | 18 20 | mpbird |  |-  ( ( N e. Fin /\ R e. Ring ) -> F : K --> ( Base ` S ) ) | 
						
							| 22 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 23 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 24 | 2 1 13 3 4 22 23 | scmatscmiddistr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y .* .1. ) ( .r ` A ) ( z .* .1. ) ) = ( ( y ( .r ` R ) z ) .* .1. ) ) | 
						
							| 25 | 7 23 | ressmulr |  |-  ( C e. ( SubRing ` A ) -> ( .r ` A ) = ( .r ` S ) ) | 
						
							| 26 | 14 25 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( .r ` A ) = ( .r ` S ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( .r ` A ) = ( .r ` S ) ) | 
						
							| 28 | 27 | oveqd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y .* .1. ) ( .r ` A ) ( z .* .1. ) ) = ( ( y .* .1. ) ( .r ` S ) ( z .* .1. ) ) ) | 
						
							| 29 | 24 28 | eqtr3d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( y ( .r ` R ) z ) .* .1. ) = ( ( y .* .1. ) ( .r ` S ) ( z .* .1. ) ) ) | 
						
							| 30 |  | simpr |  |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> R e. Ring ) | 
						
							| 32 | 30 | anim1i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) | 
						
							| 33 |  | 3anass |  |-  ( ( R e. Ring /\ y e. K /\ z e. K ) <-> ( R e. Ring /\ ( y e. K /\ z e. K ) ) ) | 
						
							| 34 | 32 33 | sylibr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( R e. Ring /\ y e. K /\ z e. K ) ) | 
						
							| 35 | 1 22 | ringcl |  |-  ( ( R e. Ring /\ y e. K /\ z e. K ) -> ( y ( .r ` R ) z ) e. K ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( y ( .r ` R ) z ) e. K ) | 
						
							| 37 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ ( y ( .r ` R ) z ) e. K ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( y ( .r ` R ) z ) .* .1. ) ) | 
						
							| 38 | 31 36 37 | syl2anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( y ( .r ` R ) z ) .* .1. ) ) | 
						
							| 39 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ y e. K ) -> ( F ` y ) = ( y .* .1. ) ) | 
						
							| 40 | 39 | ad2ant2lr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` y ) = ( y .* .1. ) ) | 
						
							| 41 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ z e. K ) -> ( F ` z ) = ( z .* .1. ) ) | 
						
							| 42 | 41 | ad2ant2l |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` z ) = ( z .* .1. ) ) | 
						
							| 43 | 40 42 | oveq12d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( ( F ` y ) ( .r ` S ) ( F ` z ) ) = ( ( y .* .1. ) ( .r ` S ) ( z .* .1. ) ) ) | 
						
							| 44 | 29 38 43 | 3eqtr4d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( y e. K /\ z e. K ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) ) | 
						
							| 45 | 44 | ralrimivva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. y e. K A. z e. K ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) ) | 
						
							| 46 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 47 | 1 46 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. K ) | 
						
							| 48 | 1 2 3 4 5 | scmatrhmval |  |-  ( ( R e. Ring /\ ( 1r ` R ) e. K ) -> ( F ` ( 1r ` R ) ) = ( ( 1r ` R ) .* .1. ) ) | 
						
							| 49 | 30 47 48 | syl2anc2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F ` ( 1r ` R ) ) = ( ( 1r ` R ) .* .1. ) ) | 
						
							| 50 | 2 | matsca2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` R ) = ( 1r ` ( Scalar ` A ) ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` R ) .* .1. ) = ( ( 1r ` ( Scalar ` A ) ) .* .1. ) ) | 
						
							| 53 | 2 | matlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) | 
						
							| 54 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 55 | 12 3 | ringidcl |  |-  ( A e. Ring -> .1. e. ( Base ` A ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` A ) ) | 
						
							| 57 |  | eqid |  |-  ( Scalar ` A ) = ( Scalar ` A ) | 
						
							| 58 |  | eqid |  |-  ( 1r ` ( Scalar ` A ) ) = ( 1r ` ( Scalar ` A ) ) | 
						
							| 59 | 12 57 4 58 | lmodvs1 |  |-  ( ( A e. LMod /\ .1. e. ( Base ` A ) ) -> ( ( 1r ` ( Scalar ` A ) ) .* .1. ) = .1. ) | 
						
							| 60 | 53 56 59 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` ( Scalar ` A ) ) .* .1. ) = .1. ) | 
						
							| 61 | 52 60 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( 1r ` R ) .* .1. ) = .1. ) | 
						
							| 62 | 49 61 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F ` ( 1r ` R ) ) = .1. ) | 
						
							| 63 | 7 3 | subrg1 |  |-  ( C e. ( SubRing ` A ) -> .1. = ( 1r ` S ) ) | 
						
							| 64 | 14 63 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. = ( 1r ` S ) ) | 
						
							| 65 | 62 64 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) | 
						
							| 66 | 21 45 65 | 3jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( F : K --> ( Base ` S ) /\ A. y e. K A. z e. K ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) /\ ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) ) | 
						
							| 67 | 8 1 | mgpbas |  |-  K = ( Base ` M ) | 
						
							| 68 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 69 | 9 68 | mgpbas |  |-  ( Base ` S ) = ( Base ` T ) | 
						
							| 70 | 8 22 | mgpplusg |  |-  ( .r ` R ) = ( +g ` M ) | 
						
							| 71 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 72 | 9 71 | mgpplusg |  |-  ( .r ` S ) = ( +g ` T ) | 
						
							| 73 | 8 46 | ringidval |  |-  ( 1r ` R ) = ( 0g ` M ) | 
						
							| 74 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 75 | 9 74 | ringidval |  |-  ( 1r ` S ) = ( 0g ` T ) | 
						
							| 76 | 67 69 70 72 73 75 | ismhm |  |-  ( F e. ( M MndHom T ) <-> ( ( M e. Mnd /\ T e. Mnd ) /\ ( F : K --> ( Base ` S ) /\ A. y e. K A. z e. K ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` S ) ( F ` z ) ) /\ ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) ) ) | 
						
							| 77 | 11 17 66 76 | syl21anbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> F e. ( M MndHom T ) ) |