Metamath Proof Explorer


Theorem scmatf1o

Description: There is a bijection between a ring and any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
Assertion scmatf1o NFinNRRingF:K1-1 ontoC

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 1 2 3 4 5 6 scmatf1 NFinNRRingF:K1-1C
8 1 2 3 4 5 6 scmatfo NFinRRingF:KontoC
9 8 3adant2 NFinNRRingF:KontoC
10 df-f1o F:K1-1 ontoCF:K1-1CF:KontoC
11 7 9 10 sylanbrc NFinNRRingF:K1-1 ontoC