Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
scmatrhmval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
scmatrhmval.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
4 |
|
scmatrhmval.t |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
5 |
|
scmatrhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) |
6 |
|
scmatrhmval.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
2 7 1 8 6
|
scmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) ∈ 𝐶 ) |
10 |
3 9
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 ∈ 𝐶 ) |
11 |
10
|
anim1ci |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∈ 𝐾 ∧ 1 ∈ 𝐶 ) ) |
12 |
1 2 6 4
|
smatvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐾 ∧ 1 ∈ 𝐶 ) ) → ( 𝑥 ∗ 1 ) ∈ 𝐶 ) |
13 |
11 12
|
syldan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∗ 1 ) ∈ 𝐶 ) |
14 |
13 5
|
fmptd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 ⟶ 𝐶 ) |