Metamath Proof Explorer


Theorem scmatf

Description: There is a function from a ring to any ring of scalar matrices over this ring. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatrhmval.o 1 = ( 1r𝐴 )
scmatrhmval.t = ( ·𝑠𝐴 )
scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
scmatrhmval.c 𝐶 = ( 𝑁 ScMat 𝑅 )
Assertion scmatf ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾𝐶 )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
2 scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 scmatrhmval.o 1 = ( 1r𝐴 )
4 scmatrhmval.t = ( ·𝑠𝐴 )
5 scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
6 scmatrhmval.c 𝐶 = ( 𝑁 ScMat 𝑅 )
7 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 2 7 1 8 6 scmatid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝐶 )
10 3 9 eqeltrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1𝐶 )
11 10 anim1ci ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥𝐾 ) → ( 𝑥𝐾1𝐶 ) )
12 1 2 6 4 smatvscl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐾1𝐶 ) ) → ( 𝑥 1 ) ∈ 𝐶 )
13 11 12 syldan ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥𝐾 ) → ( 𝑥 1 ) ∈ 𝐶 )
14 13 5 fmptd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾𝐶 )