| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scmatrhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | scmatrhmval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | scmatrhmval.o | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 4 |  | scmatrhmval.t | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 5 |  | scmatrhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ∗   1  ) ) | 
						
							| 6 |  | scmatrhmval.c | ⊢ 𝐶  =  ( 𝑁  ScMat  𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 | 2 7 1 8 6 | scmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐶 ) | 
						
							| 10 | 3 9 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   ∈  𝐶 ) | 
						
							| 11 | 10 | anim1ci | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  𝐾 )  →  ( 𝑥  ∈  𝐾  ∧   1   ∈  𝐶 ) ) | 
						
							| 12 | 1 2 6 4 | smatvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐾  ∧   1   ∈  𝐶 ) )  →  ( 𝑥  ∗   1  )  ∈  𝐶 ) | 
						
							| 13 | 11 12 | syldan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  𝐾 )  →  ( 𝑥  ∗   1  )  ∈  𝐶 ) | 
						
							| 14 | 13 5 | fmptd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐹 : 𝐾 ⟶ 𝐶 ) |