Metamath Proof Explorer


Theorem scottabes

Description: Value of the Scott operation at a class abstraction. Variant of scottab using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Assertion scottabes Scott x | φ = x | φ y y x φ rank x rank y

Proof

Step Hyp Ref Expression
1 nfs1v x y x φ
2 sbequ12 x = y φ y x φ
3 1 2 scottabf Scott x | φ = x | φ y y x φ rank x rank y