Metamath Proof Explorer


Theorem selvcllem3

Description: The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem2.u U=ImPolyR
selvcllem2.t T=JmPolyU
selvcllem2.c C=algScT
selvcllem2.d D=CalgScU
selvcllem2.i φIV
selvcllem2.j φJW
selvcllem2.r φRCRing
Assertion selvcllem3 φranDSubRingT

Proof

Step Hyp Ref Expression
1 selvcllem2.u U=ImPolyR
2 selvcllem2.t T=JmPolyU
3 selvcllem2.c C=algScT
4 selvcllem2.d D=CalgScU
5 selvcllem2.i φIV
6 selvcllem2.j φJW
7 selvcllem2.r φRCRing
8 1 2 3 4 5 6 7 selvcllem2 φDRRingHomT
9 rnrhmsubrg DRRingHomTranDSubRingT
10 8 9 syl φranDSubRingT