Metamath Proof Explorer


Theorem selvval2lem3

Description: The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem2.u U = I mPoly R
selvval2lem2.t T = J mPoly U
selvval2lem2.c C = algSc T
selvval2lem2.d D = C algSc U
selvval2lem2.i φ I V
selvval2lem2.j φ J W
selvval2lem2.r φ R CRing
Assertion selvval2lem3 φ ran D SubRing T

Proof

Step Hyp Ref Expression
1 selvval2lem2.u U = I mPoly R
2 selvval2lem2.t T = J mPoly U
3 selvval2lem2.c C = algSc T
4 selvval2lem2.d D = C algSc U
5 selvval2lem2.i φ I V
6 selvval2lem2.j φ J W
7 selvval2lem2.r φ R CRing
8 1 2 3 4 5 6 7 selvval2lem2 φ D R RingHom T
9 rnrhmsubrg D R RingHom T ran D SubRing T
10 8 9 syl φ ran D SubRing T