Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
selvval2lem3
Next ⟩
selvval2lemn
Metamath Proof Explorer
Ascii
Unicode
Theorem
selvval2lem3
Description:
The third argument passed to
evalSub
is in the domain.
(Contributed by
SN
, 15-Dec-2023)
Ref
Expression
Hypotheses
selvval2lem2.u
⊢
U
=
I
mPoly
R
selvval2lem2.t
⊢
T
=
J
mPoly
U
selvval2lem2.c
⊢
C
=
algSc
⁡
T
selvval2lem2.d
⊢
D
=
C
∘
algSc
⁡
U
selvval2lem2.i
⊢
φ
→
I
∈
V
selvval2lem2.j
⊢
φ
→
J
∈
W
selvval2lem2.r
⊢
φ
→
R
∈
CRing
Assertion
selvval2lem3
⊢
φ
→
ran
⁡
D
∈
SubRing
⁡
T
Proof
Step
Hyp
Ref
Expression
1
selvval2lem2.u
⊢
U
=
I
mPoly
R
2
selvval2lem2.t
⊢
T
=
J
mPoly
U
3
selvval2lem2.c
⊢
C
=
algSc
⁡
T
4
selvval2lem2.d
⊢
D
=
C
∘
algSc
⁡
U
5
selvval2lem2.i
⊢
φ
→
I
∈
V
6
selvval2lem2.j
⊢
φ
→
J
∈
W
7
selvval2lem2.r
⊢
φ
→
R
∈
CRing
8
1
2
3
4
5
6
7
selvval2lem2
⊢
φ
→
D
∈
R
RingHom
T
9
rnrhmsubrg
⊢
D
∈
R
RingHom
T
→
ran
⁡
D
∈
SubRing
⁡
T
10
8
9
syl
⊢
φ
→
ran
⁡
D
∈
SubRing
⁡
T