Metamath Proof Explorer


Theorem selvval2lem3

Description: The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem2.u
|- U = ( I mPoly R )
selvval2lem2.t
|- T = ( J mPoly U )
selvval2lem2.c
|- C = ( algSc ` T )
selvval2lem2.d
|- D = ( C o. ( algSc ` U ) )
selvval2lem2.i
|- ( ph -> I e. V )
selvval2lem2.j
|- ( ph -> J e. W )
selvval2lem2.r
|- ( ph -> R e. CRing )
Assertion selvval2lem3
|- ( ph -> ran D e. ( SubRing ` T ) )

Proof

Step Hyp Ref Expression
1 selvval2lem2.u
 |-  U = ( I mPoly R )
2 selvval2lem2.t
 |-  T = ( J mPoly U )
3 selvval2lem2.c
 |-  C = ( algSc ` T )
4 selvval2lem2.d
 |-  D = ( C o. ( algSc ` U ) )
5 selvval2lem2.i
 |-  ( ph -> I e. V )
6 selvval2lem2.j
 |-  ( ph -> J e. W )
7 selvval2lem2.r
 |-  ( ph -> R e. CRing )
8 1 2 3 4 5 6 7 selvval2lem2
 |-  ( ph -> D e. ( R RingHom T ) )
9 rnrhmsubrg
 |-  ( D e. ( R RingHom T ) -> ran D e. ( SubRing ` T ) )
10 8 9 syl
 |-  ( ph -> ran D e. ( SubRing ` T ) )