Description: A lemma to illustrate the purpose of selvval2lem3 and the value of Q . Will be renamed in the future when this section is moved to main. (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvval2lemn.u | |- U = ( ( I \ J ) mPoly R ) |
|
selvval2lemn.t | |- T = ( J mPoly U ) |
||
selvval2lemn.c | |- C = ( algSc ` T ) |
||
selvval2lemn.d | |- D = ( C o. ( algSc ` U ) ) |
||
selvval2lemn.q | |- Q = ( ( I evalSub T ) ` ran D ) |
||
selvval2lemn.w | |- W = ( I mPoly S ) |
||
selvval2lemn.s | |- S = ( T |`s ran D ) |
||
selvval2lemn.x | |- X = ( T ^s ( B ^m I ) ) |
||
selvval2lemn.b | |- B = ( Base ` T ) |
||
selvval2lemn.i | |- ( ph -> I e. V ) |
||
selvval2lemn.r | |- ( ph -> R e. CRing ) |
||
selvval2lemn.j | |- ( ph -> J C_ I ) |
||
Assertion | selvval2lemn | |- ( ph -> Q e. ( W RingHom X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvval2lemn.u | |- U = ( ( I \ J ) mPoly R ) |
|
2 | selvval2lemn.t | |- T = ( J mPoly U ) |
|
3 | selvval2lemn.c | |- C = ( algSc ` T ) |
|
4 | selvval2lemn.d | |- D = ( C o. ( algSc ` U ) ) |
|
5 | selvval2lemn.q | |- Q = ( ( I evalSub T ) ` ran D ) |
|
6 | selvval2lemn.w | |- W = ( I mPoly S ) |
|
7 | selvval2lemn.s | |- S = ( T |`s ran D ) |
|
8 | selvval2lemn.x | |- X = ( T ^s ( B ^m I ) ) |
|
9 | selvval2lemn.b | |- B = ( Base ` T ) |
|
10 | selvval2lemn.i | |- ( ph -> I e. V ) |
|
11 | selvval2lemn.r | |- ( ph -> R e. CRing ) |
|
12 | selvval2lemn.j | |- ( ph -> J C_ I ) |
|
13 | 10 12 | ssexd | |- ( ph -> J e. _V ) |
14 | 10 | difexd | |- ( ph -> ( I \ J ) e. _V ) |
15 | 1 | mplcrng | |- ( ( ( I \ J ) e. _V /\ R e. CRing ) -> U e. CRing ) |
16 | 14 11 15 | syl2anc | |- ( ph -> U e. CRing ) |
17 | 2 | mplcrng | |- ( ( J e. _V /\ U e. CRing ) -> T e. CRing ) |
18 | 13 16 17 | syl2anc | |- ( ph -> T e. CRing ) |
19 | 1 2 3 4 14 13 11 | selvval2lem3 | |- ( ph -> ran D e. ( SubRing ` T ) ) |
20 | 5 6 7 8 9 | evlsrhm | |- ( ( I e. V /\ T e. CRing /\ ran D e. ( SubRing ` T ) ) -> Q e. ( W RingHom X ) ) |
21 | 10 18 19 20 | syl3anc | |- ( ph -> Q e. ( W RingHom X ) ) |