Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lem4.p |
|- P = ( I mPoly R ) |
2 |
|
selvval2lem4.b |
|- B = ( Base ` P ) |
3 |
|
selvval2lem4.u |
|- U = ( ( I \ J ) mPoly R ) |
4 |
|
selvval2lem4.t |
|- T = ( J mPoly U ) |
5 |
|
selvval2lem4.c |
|- C = ( algSc ` T ) |
6 |
|
selvval2lem4.d |
|- D = ( C o. ( algSc ` U ) ) |
7 |
|
selvval2lem4.s |
|- S = ( T |`s ran D ) |
8 |
|
selvval2lem4.w |
|- W = ( I mPoly S ) |
9 |
|
selvval2lem4.x |
|- X = ( Base ` W ) |
10 |
|
selvval2lem4.i |
|- ( ph -> I e. V ) |
11 |
|
selvval2lem4.r |
|- ( ph -> R e. CRing ) |
12 |
|
selvval2lem4.j |
|- ( ph -> J C_ I ) |
13 |
|
selvval2lem4.f |
|- ( ph -> F e. B ) |
14 |
10
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
15 |
10 12
|
ssexd |
|- ( ph -> J e. _V ) |
16 |
3 4 5 6 14 15 11
|
selvval2lem2 |
|- ( ph -> D e. ( R RingHom T ) ) |
17 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
18 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
19 |
17 18
|
rhmf |
|- ( D e. ( R RingHom T ) -> D : ( Base ` R ) --> ( Base ` T ) ) |
20 |
|
ffrn |
|- ( D : ( Base ` R ) --> ( Base ` T ) -> D : ( Base ` R ) --> ran D ) |
21 |
16 19 20
|
3syl |
|- ( ph -> D : ( Base ` R ) --> ran D ) |
22 |
3 4 5 6 14 15 11
|
selvval2lem3 |
|- ( ph -> ran D e. ( SubRing ` T ) ) |
23 |
18
|
subrgss |
|- ( ran D e. ( SubRing ` T ) -> ran D C_ ( Base ` T ) ) |
24 |
7 18
|
ressbas2 |
|- ( ran D C_ ( Base ` T ) -> ran D = ( Base ` S ) ) |
25 |
22 23 24
|
3syl |
|- ( ph -> ran D = ( Base ` S ) ) |
26 |
25
|
feq3d |
|- ( ph -> ( D : ( Base ` R ) --> ran D <-> D : ( Base ` R ) --> ( Base ` S ) ) ) |
27 |
21 26
|
mpbid |
|- ( ph -> D : ( Base ` R ) --> ( Base ` S ) ) |
28 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
29 |
1 17 2 28 13
|
mplelf |
|- ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
30 |
27 29
|
fcod |
|- ( ph -> ( D o. F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` S ) ) |
31 |
|
fvexd |
|- ( ph -> ( Base ` S ) e. _V ) |
32 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
33 |
32
|
rabex |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
34 |
33
|
a1i |
|- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
35 |
31 34
|
elmapd |
|- ( ph -> ( ( D o. F ) e. ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) <-> ( D o. F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` S ) ) ) |
36 |
30 35
|
mpbird |
|- ( ph -> ( D o. F ) e. ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
37 |
|
eqid |
|- ( I mPwSer S ) = ( I mPwSer S ) |
38 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
39 |
|
eqid |
|- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
40 |
37 38 28 39 10
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
41 |
36 40
|
eleqtrrd |
|- ( ph -> ( D o. F ) e. ( Base ` ( I mPwSer S ) ) ) |
42 |
|
fvexd |
|- ( ph -> ( 0g ` S ) e. _V ) |
43 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
44 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
45 |
17 44
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
46 |
11 43 45
|
3syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
47 |
|
ssidd |
|- ( ph -> ( Base ` R ) C_ ( Base ` R ) ) |
48 |
|
fvexd |
|- ( ph -> ( Base ` R ) e. _V ) |
49 |
1 2 44 13 11
|
mplelsfi |
|- ( ph -> F finSupp ( 0g ` R ) ) |
50 |
6
|
a1i |
|- ( ph -> D = ( C o. ( algSc ` U ) ) ) |
51 |
50
|
fveq1d |
|- ( ph -> ( D ` ( 0g ` R ) ) = ( ( C o. ( algSc ` U ) ) ` ( 0g ` R ) ) ) |
52 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
53 |
|
eqid |
|- ( algSc ` U ) = ( algSc ` U ) |
54 |
11 43
|
syl |
|- ( ph -> R e. Ring ) |
55 |
3 52 17 53 14 54
|
mplasclf |
|- ( ph -> ( algSc ` U ) : ( Base ` R ) --> ( Base ` U ) ) |
56 |
55 46
|
fvco3d |
|- ( ph -> ( ( C o. ( algSc ` U ) ) ` ( 0g ` R ) ) = ( C ` ( ( algSc ` U ) ` ( 0g ` R ) ) ) ) |
57 |
3 14 11
|
mplsca |
|- ( ph -> R = ( Scalar ` U ) ) |
58 |
57
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` U ) ) ) |
59 |
58
|
fveq2d |
|- ( ph -> ( ( algSc ` U ) ` ( 0g ` R ) ) = ( ( algSc ` U ) ` ( 0g ` ( Scalar ` U ) ) ) ) |
60 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
61 |
3
|
mplassa |
|- ( ( ( I \ J ) e. _V /\ R e. CRing ) -> U e. AssAlg ) |
62 |
14 11 61
|
syl2anc |
|- ( ph -> U e. AssAlg ) |
63 |
|
assalmod |
|- ( U e. AssAlg -> U e. LMod ) |
64 |
62 63
|
syl |
|- ( ph -> U e. LMod ) |
65 |
|
assaring |
|- ( U e. AssAlg -> U e. Ring ) |
66 |
62 65
|
syl |
|- ( ph -> U e. Ring ) |
67 |
53 60 64 66
|
ascl0 |
|- ( ph -> ( ( algSc ` U ) ` ( 0g ` ( Scalar ` U ) ) ) = ( 0g ` U ) ) |
68 |
59 67
|
eqtrd |
|- ( ph -> ( ( algSc ` U ) ` ( 0g ` R ) ) = ( 0g ` U ) ) |
69 |
68
|
fveq2d |
|- ( ph -> ( C ` ( ( algSc ` U ) ` ( 0g ` R ) ) ) = ( C ` ( 0g ` U ) ) ) |
70 |
4 15 62
|
mplsca |
|- ( ph -> U = ( Scalar ` T ) ) |
71 |
70
|
fveq2d |
|- ( ph -> ( 0g ` U ) = ( 0g ` ( Scalar ` T ) ) ) |
72 |
71
|
fveq2d |
|- ( ph -> ( C ` ( 0g ` U ) ) = ( C ` ( 0g ` ( Scalar ` T ) ) ) ) |
73 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
74 |
3 4 14 15 11
|
selvval2lem1 |
|- ( ph -> T e. AssAlg ) |
75 |
|
assalmod |
|- ( T e. AssAlg -> T e. LMod ) |
76 |
74 75
|
syl |
|- ( ph -> T e. LMod ) |
77 |
|
assaring |
|- ( T e. AssAlg -> T e. Ring ) |
78 |
74 77
|
syl |
|- ( ph -> T e. Ring ) |
79 |
5 73 76 78
|
ascl0 |
|- ( ph -> ( C ` ( 0g ` ( Scalar ` T ) ) ) = ( 0g ` T ) ) |
80 |
|
subrgsubg |
|- ( ran D e. ( SubRing ` T ) -> ran D e. ( SubGrp ` T ) ) |
81 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
82 |
7 81
|
subg0 |
|- ( ran D e. ( SubGrp ` T ) -> ( 0g ` T ) = ( 0g ` S ) ) |
83 |
22 80 82
|
3syl |
|- ( ph -> ( 0g ` T ) = ( 0g ` S ) ) |
84 |
79 83
|
eqtrd |
|- ( ph -> ( C ` ( 0g ` ( Scalar ` T ) ) ) = ( 0g ` S ) ) |
85 |
69 72 84
|
3eqtrd |
|- ( ph -> ( C ` ( ( algSc ` U ) ` ( 0g ` R ) ) ) = ( 0g ` S ) ) |
86 |
51 56 85
|
3eqtrd |
|- ( ph -> ( D ` ( 0g ` R ) ) = ( 0g ` S ) ) |
87 |
42 46 29 21 47 34 48 49 86
|
fsuppcor |
|- ( ph -> ( D o. F ) finSupp ( 0g ` S ) ) |
88 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
89 |
8 37 39 88 9
|
mplelbas |
|- ( ( D o. F ) e. X <-> ( ( D o. F ) e. ( Base ` ( I mPwSer S ) ) /\ ( D o. F ) finSupp ( 0g ` S ) ) ) |
90 |
41 87 89
|
sylanbrc |
|- ( ph -> ( D o. F ) e. X ) |