Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . (Contributed by SN, 15-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvval2lem1.u | |- U = ( I mPoly R ) |
|
selvval2lem1.t | |- T = ( J mPoly U ) |
||
selvval2lem1.i | |- ( ph -> I e. V ) |
||
selvval2lem1.j | |- ( ph -> J e. W ) |
||
selvval2lem1.r | |- ( ph -> R e. CRing ) |
||
Assertion | selvval2lem1 | |- ( ph -> T e. AssAlg ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvval2lem1.u | |- U = ( I mPoly R ) |
|
2 | selvval2lem1.t | |- T = ( J mPoly U ) |
|
3 | selvval2lem1.i | |- ( ph -> I e. V ) |
|
4 | selvval2lem1.j | |- ( ph -> J e. W ) |
|
5 | selvval2lem1.r | |- ( ph -> R e. CRing ) |
|
6 | 1 | mplcrng | |- ( ( I e. V /\ R e. CRing ) -> U e. CRing ) |
7 | 3 5 6 | syl2anc | |- ( ph -> U e. CRing ) |
8 | 2 | mplassa | |- ( ( J e. W /\ U e. CRing ) -> T e. AssAlg ) |
9 | 4 7 8 | syl2anc | |- ( ph -> T e. AssAlg ) |