Metamath Proof Explorer


Theorem selvval2lem1

Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem1.u
|- U = ( I mPoly R )
selvval2lem1.t
|- T = ( J mPoly U )
selvval2lem1.i
|- ( ph -> I e. V )
selvval2lem1.j
|- ( ph -> J e. W )
selvval2lem1.r
|- ( ph -> R e. CRing )
Assertion selvval2lem1
|- ( ph -> T e. AssAlg )

Proof

Step Hyp Ref Expression
1 selvval2lem1.u
 |-  U = ( I mPoly R )
2 selvval2lem1.t
 |-  T = ( J mPoly U )
3 selvval2lem1.i
 |-  ( ph -> I e. V )
4 selvval2lem1.j
 |-  ( ph -> J e. W )
5 selvval2lem1.r
 |-  ( ph -> R e. CRing )
6 1 mplcrng
 |-  ( ( I e. V /\ R e. CRing ) -> U e. CRing )
7 3 5 6 syl2anc
 |-  ( ph -> U e. CRing )
8 2 mplassa
 |-  ( ( J e. W /\ U e. CRing ) -> T e. AssAlg )
9 4 7 8 syl2anc
 |-  ( ph -> T e. AssAlg )