Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
selvval2lem1
Metamath Proof Explorer
Description: T is an associative algebra. For simplicity, I stands for
( I \ J ) and we have J e. W instead of J C_ I .
(Contributed by SN , 15-Dec-2023)
Ref
Expression
Hypotheses
selvval2lem1.u
⊢ U = I mPoly R
selvval2lem1.t
⊢ T = J mPoly U
selvval2lem1.i
⊢ φ → I ∈ V
selvval2lem1.j
⊢ φ → J ∈ W
selvval2lem1.r
⊢ φ → R ∈ CRing
Assertion
selvval2lem1
⊢ φ → T ∈ AssAlg
Proof
Step
Hyp
Ref
Expression
1
selvval2lem1.u
⊢ U = I mPoly R
2
selvval2lem1.t
⊢ T = J mPoly U
3
selvval2lem1.i
⊢ φ → I ∈ V
4
selvval2lem1.j
⊢ φ → J ∈ W
5
selvval2lem1.r
⊢ φ → R ∈ CRing
6
1
mplcrng
⊢ I ∈ V ∧ R ∈ CRing → U ∈ CRing
7
3 5 6
syl2anc
⊢ φ → U ∈ CRing
8
2
mplassa
⊢ J ∈ W ∧ U ∈ CRing → T ∈ AssAlg
9
4 7 8
syl2anc
⊢ φ → T ∈ AssAlg