Metamath Proof Explorer


Theorem selvval2lem1

Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem1.u U = I mPoly R
selvval2lem1.t T = J mPoly U
selvval2lem1.i φ I V
selvval2lem1.j φ J W
selvval2lem1.r φ R CRing
Assertion selvval2lem1 φ T AssAlg

Proof

Step Hyp Ref Expression
1 selvval2lem1.u U = I mPoly R
2 selvval2lem1.t T = J mPoly U
3 selvval2lem1.i φ I V
4 selvval2lem1.j φ J W
5 selvval2lem1.r φ R CRing
6 1 mplcrng I V R CRing U CRing
7 3 5 6 syl2anc φ U CRing
8 2 mplassa J W U CRing T AssAlg
9 4 7 8 syl2anc φ T AssAlg