Metamath Proof Explorer


Theorem selvval2lem1

Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem1.u 𝑈 = ( 𝐼 mPoly 𝑅 )
selvval2lem1.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2lem1.i ( 𝜑𝐼𝑉 )
selvval2lem1.j ( 𝜑𝐽𝑊 )
selvval2lem1.r ( 𝜑𝑅 ∈ CRing )
Assertion selvval2lem1 ( 𝜑𝑇 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 selvval2lem1.u 𝑈 = ( 𝐼 mPoly 𝑅 )
2 selvval2lem1.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvval2lem1.i ( 𝜑𝐼𝑉 )
4 selvval2lem1.j ( 𝜑𝐽𝑊 )
5 selvval2lem1.r ( 𝜑𝑅 ∈ CRing )
6 1 mplcrng ( ( 𝐼𝑉𝑅 ∈ CRing ) → 𝑈 ∈ CRing )
7 3 5 6 syl2anc ( 𝜑𝑈 ∈ CRing )
8 2 mplassa ( ( 𝐽𝑊𝑈 ∈ CRing ) → 𝑇 ∈ AssAlg )
9 4 7 8 syl2anc ( 𝜑𝑇 ∈ AssAlg )