Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
selvval2lem1
Metamath Proof Explorer
Description: T is an associative algebra. For simplicity, I stands for
( I \ J ) and we have J e. W instead of J C_ I .
(Contributed by SN , 15-Dec-2023)
Ref
Expression
Hypotheses
selvval2lem1.u
⊢ 𝑈 = ( 𝐼 mPoly 𝑅 )
selvval2lem1.t
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2lem1.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 )
selvval2lem1.j
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 )
selvval2lem1.r
⊢ ( 𝜑 → 𝑅 ∈ CRing )
Assertion
selvval2lem1
⊢ ( 𝜑 → 𝑇 ∈ AssAlg )
Proof
Step
Hyp
Ref
Expression
1
selvval2lem1.u
⊢ 𝑈 = ( 𝐼 mPoly 𝑅 )
2
selvval2lem1.t
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 )
3
selvval2lem1.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 )
4
selvval2lem1.j
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 )
5
selvval2lem1.r
⊢ ( 𝜑 → 𝑅 ∈ CRing )
6
1
mplcrng
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ CRing )
7
3 5 6
syl2anc
⊢ ( 𝜑 → 𝑈 ∈ CRing )
8
2
mplassa
⊢ ( ( 𝐽 ∈ 𝑊 ∧ 𝑈 ∈ CRing ) → 𝑇 ∈ AssAlg )
9
4 7 8
syl2anc
⊢ ( 𝜑 → 𝑇 ∈ AssAlg )