Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lem2.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvval2lem2.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
3 |
|
selvval2lem2.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
4 |
|
selvval2lem2.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
5 |
|
selvval2lem2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
selvval2lem2.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
7 |
|
selvval2lem2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
1 2 5 6 7
|
selvval2lem1 |
⊢ ( 𝜑 → 𝑇 ∈ AssAlg ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
10 |
3 9
|
asclrhm |
⊢ ( 𝑇 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
11 |
8 10
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
12 |
1
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg ) |
13 |
5 7 12
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
14 |
2 6 13
|
mplsca |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑇 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( 𝑈 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
16 |
11 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ) |
17 |
|
eqid |
⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) |
18 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
19 |
17 18
|
asclrhm |
⊢ ( 𝑈 ∈ AssAlg → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
20 |
13 19
|
syl |
⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
21 |
|
rhmco |
⊢ ( ( 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ∧ ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
22 |
16 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
23 |
1 5 7
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑈 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
25 |
22 24
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 RingHom 𝑇 ) ) |
26 |
4 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ) |