Metamath Proof Explorer


Theorem selvval2lem2

Description: D is a ring homomorphism. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem2.u 𝑈 = ( 𝐼 mPoly 𝑅 )
selvval2lem2.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2lem2.c 𝐶 = ( algSc ‘ 𝑇 )
selvval2lem2.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
selvval2lem2.i ( 𝜑𝐼𝑉 )
selvval2lem2.j ( 𝜑𝐽𝑊 )
selvval2lem2.r ( 𝜑𝑅 ∈ CRing )
Assertion selvval2lem2 ( 𝜑𝐷 ∈ ( 𝑅 RingHom 𝑇 ) )

Proof

Step Hyp Ref Expression
1 selvval2lem2.u 𝑈 = ( 𝐼 mPoly 𝑅 )
2 selvval2lem2.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvval2lem2.c 𝐶 = ( algSc ‘ 𝑇 )
4 selvval2lem2.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
5 selvval2lem2.i ( 𝜑𝐼𝑉 )
6 selvval2lem2.j ( 𝜑𝐽𝑊 )
7 selvval2lem2.r ( 𝜑𝑅 ∈ CRing )
8 1 2 5 6 7 selvval2lem1 ( 𝜑𝑇 ∈ AssAlg )
9 eqid ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 )
10 3 9 asclrhm ( 𝑇 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) )
11 8 10 syl ( 𝜑𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) )
12 1 mplassa ( ( 𝐼𝑉𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg )
13 5 7 12 syl2anc ( 𝜑𝑈 ∈ AssAlg )
14 2 6 13 mplsca ( 𝜑𝑈 = ( Scalar ‘ 𝑇 ) )
15 14 oveq1d ( 𝜑 → ( 𝑈 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) )
16 11 15 eleqtrrd ( 𝜑𝐶 ∈ ( 𝑈 RingHom 𝑇 ) )
17 eqid ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 )
18 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
19 17 18 asclrhm ( 𝑈 ∈ AssAlg → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) )
20 13 19 syl ( 𝜑 → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) )
21 rhmco ( ( 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ∧ ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) )
22 16 20 21 syl2anc ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) )
23 1 5 7 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑈 ) )
24 23 oveq1d ( 𝜑 → ( 𝑅 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) )
25 22 24 eleqtrrd ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 RingHom 𝑇 ) )
26 4 25 eqeltrid ( 𝜑𝐷 ∈ ( 𝑅 RingHom 𝑇 ) )