Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lem2.u |
|- U = ( I mPoly R ) |
2 |
|
selvval2lem2.t |
|- T = ( J mPoly U ) |
3 |
|
selvval2lem2.c |
|- C = ( algSc ` T ) |
4 |
|
selvval2lem2.d |
|- D = ( C o. ( algSc ` U ) ) |
5 |
|
selvval2lem2.i |
|- ( ph -> I e. V ) |
6 |
|
selvval2lem2.j |
|- ( ph -> J e. W ) |
7 |
|
selvval2lem2.r |
|- ( ph -> R e. CRing ) |
8 |
1 2 5 6 7
|
selvval2lem1 |
|- ( ph -> T e. AssAlg ) |
9 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
10 |
3 9
|
asclrhm |
|- ( T e. AssAlg -> C e. ( ( Scalar ` T ) RingHom T ) ) |
11 |
8 10
|
syl |
|- ( ph -> C e. ( ( Scalar ` T ) RingHom T ) ) |
12 |
1
|
mplassa |
|- ( ( I e. V /\ R e. CRing ) -> U e. AssAlg ) |
13 |
5 7 12
|
syl2anc |
|- ( ph -> U e. AssAlg ) |
14 |
2 6 13
|
mplsca |
|- ( ph -> U = ( Scalar ` T ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( U RingHom T ) = ( ( Scalar ` T ) RingHom T ) ) |
16 |
11 15
|
eleqtrrd |
|- ( ph -> C e. ( U RingHom T ) ) |
17 |
|
eqid |
|- ( algSc ` U ) = ( algSc ` U ) |
18 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
19 |
17 18
|
asclrhm |
|- ( U e. AssAlg -> ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) |
20 |
13 19
|
syl |
|- ( ph -> ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) |
21 |
|
rhmco |
|- ( ( C e. ( U RingHom T ) /\ ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) -> ( C o. ( algSc ` U ) ) e. ( ( Scalar ` U ) RingHom T ) ) |
22 |
16 20 21
|
syl2anc |
|- ( ph -> ( C o. ( algSc ` U ) ) e. ( ( Scalar ` U ) RingHom T ) ) |
23 |
1 5 7
|
mplsca |
|- ( ph -> R = ( Scalar ` U ) ) |
24 |
23
|
oveq1d |
|- ( ph -> ( R RingHom T ) = ( ( Scalar ` U ) RingHom T ) ) |
25 |
22 24
|
eleqtrrd |
|- ( ph -> ( C o. ( algSc ` U ) ) e. ( R RingHom T ) ) |
26 |
4 25
|
eqeltrid |
|- ( ph -> D e. ( R RingHom T ) ) |