Metamath Proof Explorer


Theorem selvval2lem2

Description: D is a ring homomorphism. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvval2lem2.u
|- U = ( I mPoly R )
selvval2lem2.t
|- T = ( J mPoly U )
selvval2lem2.c
|- C = ( algSc ` T )
selvval2lem2.d
|- D = ( C o. ( algSc ` U ) )
selvval2lem2.i
|- ( ph -> I e. V )
selvval2lem2.j
|- ( ph -> J e. W )
selvval2lem2.r
|- ( ph -> R e. CRing )
Assertion selvval2lem2
|- ( ph -> D e. ( R RingHom T ) )

Proof

Step Hyp Ref Expression
1 selvval2lem2.u
 |-  U = ( I mPoly R )
2 selvval2lem2.t
 |-  T = ( J mPoly U )
3 selvval2lem2.c
 |-  C = ( algSc ` T )
4 selvval2lem2.d
 |-  D = ( C o. ( algSc ` U ) )
5 selvval2lem2.i
 |-  ( ph -> I e. V )
6 selvval2lem2.j
 |-  ( ph -> J e. W )
7 selvval2lem2.r
 |-  ( ph -> R e. CRing )
8 1 2 5 6 7 selvval2lem1
 |-  ( ph -> T e. AssAlg )
9 eqid
 |-  ( Scalar ` T ) = ( Scalar ` T )
10 3 9 asclrhm
 |-  ( T e. AssAlg -> C e. ( ( Scalar ` T ) RingHom T ) )
11 8 10 syl
 |-  ( ph -> C e. ( ( Scalar ` T ) RingHom T ) )
12 1 mplassa
 |-  ( ( I e. V /\ R e. CRing ) -> U e. AssAlg )
13 5 7 12 syl2anc
 |-  ( ph -> U e. AssAlg )
14 2 6 13 mplsca
 |-  ( ph -> U = ( Scalar ` T ) )
15 14 oveq1d
 |-  ( ph -> ( U RingHom T ) = ( ( Scalar ` T ) RingHom T ) )
16 11 15 eleqtrrd
 |-  ( ph -> C e. ( U RingHom T ) )
17 eqid
 |-  ( algSc ` U ) = ( algSc ` U )
18 eqid
 |-  ( Scalar ` U ) = ( Scalar ` U )
19 17 18 asclrhm
 |-  ( U e. AssAlg -> ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) )
20 13 19 syl
 |-  ( ph -> ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) )
21 rhmco
 |-  ( ( C e. ( U RingHom T ) /\ ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) -> ( C o. ( algSc ` U ) ) e. ( ( Scalar ` U ) RingHom T ) )
22 16 20 21 syl2anc
 |-  ( ph -> ( C o. ( algSc ` U ) ) e. ( ( Scalar ` U ) RingHom T ) )
23 1 5 7 mplsca
 |-  ( ph -> R = ( Scalar ` U ) )
24 23 oveq1d
 |-  ( ph -> ( R RingHom T ) = ( ( Scalar ` U ) RingHom T ) )
25 22 24 eleqtrrd
 |-  ( ph -> ( C o. ( algSc ` U ) ) e. ( R RingHom T ) )
26 4 25 eqeltrid
 |-  ( ph -> D e. ( R RingHom T ) )