Metamath Proof Explorer


Theorem selvval2lem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvval2lem4.p P = I mPoly R
selvval2lem4.b B = Base P
selvval2lem4.u U = I J mPoly R
selvval2lem4.t T = J mPoly U
selvval2lem4.c C = algSc T
selvval2lem4.d D = C algSc U
selvval2lem4.s S = T 𝑠 ran D
selvval2lem4.w W = I mPoly S
selvval2lem4.x X = Base W
selvval2lem4.i φ I V
selvval2lem4.r φ R CRing
selvval2lem4.j φ J I
selvval2lem4.f φ F B
Assertion selvval2lem4 φ D F X

Proof

Step Hyp Ref Expression
1 selvval2lem4.p P = I mPoly R
2 selvval2lem4.b B = Base P
3 selvval2lem4.u U = I J mPoly R
4 selvval2lem4.t T = J mPoly U
5 selvval2lem4.c C = algSc T
6 selvval2lem4.d D = C algSc U
7 selvval2lem4.s S = T 𝑠 ran D
8 selvval2lem4.w W = I mPoly S
9 selvval2lem4.x X = Base W
10 selvval2lem4.i φ I V
11 selvval2lem4.r φ R CRing
12 selvval2lem4.j φ J I
13 selvval2lem4.f φ F B
14 10 difexd φ I J V
15 10 12 ssexd φ J V
16 3 4 5 6 14 15 11 selvval2lem2 φ D R RingHom T
17 eqid Base R = Base R
18 eqid Base T = Base T
19 17 18 rhmf D R RingHom T D : Base R Base T
20 ffrn D : Base R Base T D : Base R ran D
21 16 19 20 3syl φ D : Base R ran D
22 3 4 5 6 14 15 11 selvval2lem3 φ ran D SubRing T
23 18 subrgss ran D SubRing T ran D Base T
24 7 18 ressbas2 ran D Base T ran D = Base S
25 22 23 24 3syl φ ran D = Base S
26 25 feq3d φ D : Base R ran D D : Base R Base S
27 21 26 mpbid φ D : Base R Base S
28 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
29 1 17 2 28 13 mplelf φ F : f 0 I | f -1 Fin Base R
30 27 29 fcod φ D F : f 0 I | f -1 Fin Base S
31 fvexd φ Base S V
32 ovex 0 I V
33 32 rabex f 0 I | f -1 Fin V
34 33 a1i φ f 0 I | f -1 Fin V
35 31 34 elmapd φ D F Base S f 0 I | f -1 Fin D F : f 0 I | f -1 Fin Base S
36 30 35 mpbird φ D F Base S f 0 I | f -1 Fin
37 eqid I mPwSer S = I mPwSer S
38 eqid Base S = Base S
39 eqid Base I mPwSer S = Base I mPwSer S
40 37 38 28 39 10 psrbas φ Base I mPwSer S = Base S f 0 I | f -1 Fin
41 36 40 eleqtrrd φ D F Base I mPwSer S
42 fvexd φ 0 S V
43 crngring R CRing R Ring
44 eqid 0 R = 0 R
45 17 44 ring0cl R Ring 0 R Base R
46 11 43 45 3syl φ 0 R Base R
47 ssidd φ Base R Base R
48 fvexd φ Base R V
49 1 2 44 13 11 mplelsfi φ finSupp 0 R F
50 6 a1i φ D = C algSc U
51 50 fveq1d φ D 0 R = C algSc U 0 R
52 eqid Base U = Base U
53 eqid algSc U = algSc U
54 11 43 syl φ R Ring
55 3 52 17 53 14 54 mplasclf φ algSc U : Base R Base U
56 55 46 fvco3d φ C algSc U 0 R = C algSc U 0 R
57 3 14 11 mplsca φ R = Scalar U
58 57 fveq2d φ 0 R = 0 Scalar U
59 58 fveq2d φ algSc U 0 R = algSc U 0 Scalar U
60 eqid Scalar U = Scalar U
61 3 mplassa I J V R CRing U AssAlg
62 14 11 61 syl2anc φ U AssAlg
63 assalmod U AssAlg U LMod
64 62 63 syl φ U LMod
65 assaring U AssAlg U Ring
66 62 65 syl φ U Ring
67 53 60 64 66 ascl0 φ algSc U 0 Scalar U = 0 U
68 59 67 eqtrd φ algSc U 0 R = 0 U
69 68 fveq2d φ C algSc U 0 R = C 0 U
70 4 15 62 mplsca φ U = Scalar T
71 70 fveq2d φ 0 U = 0 Scalar T
72 71 fveq2d φ C 0 U = C 0 Scalar T
73 eqid Scalar T = Scalar T
74 3 4 14 15 11 selvval2lem1 φ T AssAlg
75 assalmod T AssAlg T LMod
76 74 75 syl φ T LMod
77 assaring T AssAlg T Ring
78 74 77 syl φ T Ring
79 5 73 76 78 ascl0 φ C 0 Scalar T = 0 T
80 subrgsubg ran D SubRing T ran D SubGrp T
81 eqid 0 T = 0 T
82 7 81 subg0 ran D SubGrp T 0 T = 0 S
83 22 80 82 3syl φ 0 T = 0 S
84 79 83 eqtrd φ C 0 Scalar T = 0 S
85 69 72 84 3eqtrd φ C algSc U 0 R = 0 S
86 51 56 85 3eqtrd φ D 0 R = 0 S
87 42 46 29 21 47 34 48 49 86 fsuppcor φ finSupp 0 S D F
88 eqid 0 S = 0 S
89 8 37 39 88 9 mplelbas D F X D F Base I mPwSer S finSupp 0 S D F
90 41 87 89 sylanbrc φ D F X