Metamath Proof Explorer


Theorem selvval2lem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvval2lem4.p 𝑃 = ( 𝐼 mPoly 𝑅 )
selvval2lem4.b 𝐵 = ( Base ‘ 𝑃 )
selvval2lem4.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvval2lem4.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2lem4.c 𝐶 = ( algSc ‘ 𝑇 )
selvval2lem4.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
selvval2lem4.s 𝑆 = ( 𝑇s ran 𝐷 )
selvval2lem4.w 𝑊 = ( 𝐼 mPoly 𝑆 )
selvval2lem4.x 𝑋 = ( Base ‘ 𝑊 )
selvval2lem4.i ( 𝜑𝐼𝑉 )
selvval2lem4.r ( 𝜑𝑅 ∈ CRing )
selvval2lem4.j ( 𝜑𝐽𝐼 )
selvval2lem4.f ( 𝜑𝐹𝐵 )
Assertion selvval2lem4 ( 𝜑 → ( 𝐷𝐹 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 selvval2lem4.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 selvval2lem4.b 𝐵 = ( Base ‘ 𝑃 )
3 selvval2lem4.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
4 selvval2lem4.t 𝑇 = ( 𝐽 mPoly 𝑈 )
5 selvval2lem4.c 𝐶 = ( algSc ‘ 𝑇 )
6 selvval2lem4.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
7 selvval2lem4.s 𝑆 = ( 𝑇s ran 𝐷 )
8 selvval2lem4.w 𝑊 = ( 𝐼 mPoly 𝑆 )
9 selvval2lem4.x 𝑋 = ( Base ‘ 𝑊 )
10 selvval2lem4.i ( 𝜑𝐼𝑉 )
11 selvval2lem4.r ( 𝜑𝑅 ∈ CRing )
12 selvval2lem4.j ( 𝜑𝐽𝐼 )
13 selvval2lem4.f ( 𝜑𝐹𝐵 )
14 10 difexd ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
15 10 12 ssexd ( 𝜑𝐽 ∈ V )
16 3 4 5 6 14 15 11 selvval2lem2 ( 𝜑𝐷 ∈ ( 𝑅 RingHom 𝑇 ) )
17 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
18 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
19 17 18 rhmf ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) → 𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑇 ) )
20 ffrn ( 𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑇 ) → 𝐷 : ( Base ‘ 𝑅 ) ⟶ ran 𝐷 )
21 16 19 20 3syl ( 𝜑𝐷 : ( Base ‘ 𝑅 ) ⟶ ran 𝐷 )
22 3 4 5 6 14 15 11 selvval2lem3 ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )
23 18 subrgss ( ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) → ran 𝐷 ⊆ ( Base ‘ 𝑇 ) )
24 7 18 ressbas2 ( ran 𝐷 ⊆ ( Base ‘ 𝑇 ) → ran 𝐷 = ( Base ‘ 𝑆 ) )
25 22 23 24 3syl ( 𝜑 → ran 𝐷 = ( Base ‘ 𝑆 ) )
26 25 feq3d ( 𝜑 → ( 𝐷 : ( Base ‘ 𝑅 ) ⟶ ran 𝐷𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) )
27 21 26 mpbid ( 𝜑𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
28 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
29 1 17 2 28 13 mplelf ( 𝜑𝐹 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
30 27 29 fcod ( 𝜑 → ( 𝐷𝐹 ) : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) )
31 fvexd ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V )
32 ovex ( ℕ0m 𝐼 ) ∈ V
33 32 rabex { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V
34 33 a1i ( 𝜑 → { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V )
35 31 34 elmapd ( 𝜑 → ( ( 𝐷𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ↔ ( 𝐷𝐹 ) : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) )
36 30 35 mpbird ( 𝜑 → ( 𝐷𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
37 eqid ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 )
38 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
39 eqid ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) )
40 37 38 28 39 10 psrbas ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
41 36 40 eleqtrrd ( 𝜑 → ( 𝐷𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) )
42 fvexd ( 𝜑 → ( 0g𝑆 ) ∈ V )
43 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
44 eqid ( 0g𝑅 ) = ( 0g𝑅 )
45 17 44 ring0cl ( 𝑅 ∈ Ring → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
46 11 43 45 3syl ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
47 ssidd ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
48 fvexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
49 1 2 44 13 11 mplelsfi ( 𝜑𝐹 finSupp ( 0g𝑅 ) )
50 6 a1i ( 𝜑𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) )
51 50 fveq1d ( 𝜑 → ( 𝐷 ‘ ( 0g𝑅 ) ) = ( ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ‘ ( 0g𝑅 ) ) )
52 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
53 eqid ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 )
54 11 43 syl ( 𝜑𝑅 ∈ Ring )
55 3 52 17 53 14 54 mplasclf ( 𝜑 → ( algSc ‘ 𝑈 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑈 ) )
56 55 46 fvco3d ( 𝜑 → ( ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ‘ ( 0g𝑅 ) ) = ( 𝐶 ‘ ( ( algSc ‘ 𝑈 ) ‘ ( 0g𝑅 ) ) ) )
57 3 14 11 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑈 ) )
58 57 fveq2d ( 𝜑 → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )
59 58 fveq2d ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g𝑅 ) ) = ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) )
60 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
61 3 mplassa ( ( ( 𝐼𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg )
62 14 11 61 syl2anc ( 𝜑𝑈 ∈ AssAlg )
63 assalmod ( 𝑈 ∈ AssAlg → 𝑈 ∈ LMod )
64 62 63 syl ( 𝜑𝑈 ∈ LMod )
65 assaring ( 𝑈 ∈ AssAlg → 𝑈 ∈ Ring )
66 62 65 syl ( 𝜑𝑈 ∈ Ring )
67 53 60 64 66 ascl0 ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) = ( 0g𝑈 ) )
68 59 67 eqtrd ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g𝑅 ) ) = ( 0g𝑈 ) )
69 68 fveq2d ( 𝜑 → ( 𝐶 ‘ ( ( algSc ‘ 𝑈 ) ‘ ( 0g𝑅 ) ) ) = ( 𝐶 ‘ ( 0g𝑈 ) ) )
70 4 15 62 mplsca ( 𝜑𝑈 = ( Scalar ‘ 𝑇 ) )
71 70 fveq2d ( 𝜑 → ( 0g𝑈 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) )
72 71 fveq2d ( 𝜑 → ( 𝐶 ‘ ( 0g𝑈 ) ) = ( 𝐶 ‘ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) )
73 eqid ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 )
74 3 4 14 15 11 selvval2lem1 ( 𝜑𝑇 ∈ AssAlg )
75 assalmod ( 𝑇 ∈ AssAlg → 𝑇 ∈ LMod )
76 74 75 syl ( 𝜑𝑇 ∈ LMod )
77 assaring ( 𝑇 ∈ AssAlg → 𝑇 ∈ Ring )
78 74 77 syl ( 𝜑𝑇 ∈ Ring )
79 5 73 76 78 ascl0 ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) = ( 0g𝑇 ) )
80 subrgsubg ( ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) → ran 𝐷 ∈ ( SubGrp ‘ 𝑇 ) )
81 eqid ( 0g𝑇 ) = ( 0g𝑇 )
82 7 81 subg0 ( ran 𝐷 ∈ ( SubGrp ‘ 𝑇 ) → ( 0g𝑇 ) = ( 0g𝑆 ) )
83 22 80 82 3syl ( 𝜑 → ( 0g𝑇 ) = ( 0g𝑆 ) )
84 79 83 eqtrd ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) = ( 0g𝑆 ) )
85 69 72 84 3eqtrd ( 𝜑 → ( 𝐶 ‘ ( ( algSc ‘ 𝑈 ) ‘ ( 0g𝑅 ) ) ) = ( 0g𝑆 ) )
86 51 56 85 3eqtrd ( 𝜑 → ( 𝐷 ‘ ( 0g𝑅 ) ) = ( 0g𝑆 ) )
87 42 46 29 21 47 34 48 49 86 fsuppcor ( 𝜑 → ( 𝐷𝐹 ) finSupp ( 0g𝑆 ) )
88 eqid ( 0g𝑆 ) = ( 0g𝑆 )
89 8 37 39 88 9 mplelbas ( ( 𝐷𝐹 ) ∈ 𝑋 ↔ ( ( 𝐷𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∧ ( 𝐷𝐹 ) finSupp ( 0g𝑆 ) ) )
90 41 87 89 sylanbrc ( 𝜑 → ( 𝐷𝐹 ) ∈ 𝑋 )