Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lem4.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvval2lem4.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
selvval2lem4.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
4 |
|
selvval2lem4.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
5 |
|
selvval2lem4.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
6 |
|
selvval2lem4.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
7 |
|
selvval2lem4.s |
⊢ 𝑆 = ( 𝑇 ↾s ran 𝐷 ) |
8 |
|
selvval2lem4.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑆 ) |
9 |
|
selvval2lem4.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
10 |
|
selvval2lem4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
selvval2lem4.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
12 |
|
selvval2lem4.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
13 |
|
selvval2lem4.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
14 |
10
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
15 |
10 12
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
16 |
3 4 5 6 14 15 11
|
selvval2lem2 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
19 |
17 18
|
rhmf |
⊢ ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) → 𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑇 ) ) |
20 |
|
ffrn |
⊢ ( 𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑇 ) → 𝐷 : ( Base ‘ 𝑅 ) ⟶ ran 𝐷 ) |
21 |
16 19 20
|
3syl |
⊢ ( 𝜑 → 𝐷 : ( Base ‘ 𝑅 ) ⟶ ran 𝐷 ) |
22 |
3 4 5 6 14 15 11
|
selvval2lem3 |
⊢ ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) |
23 |
18
|
subrgss |
⊢ ( ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) → ran 𝐷 ⊆ ( Base ‘ 𝑇 ) ) |
24 |
7 18
|
ressbas2 |
⊢ ( ran 𝐷 ⊆ ( Base ‘ 𝑇 ) → ran 𝐷 = ( Base ‘ 𝑆 ) ) |
25 |
22 23 24
|
3syl |
⊢ ( 𝜑 → ran 𝐷 = ( Base ‘ 𝑆 ) ) |
26 |
25
|
feq3d |
⊢ ( 𝜑 → ( 𝐷 : ( Base ‘ 𝑅 ) ⟶ ran 𝐷 ↔ 𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) ) |
27 |
21 26
|
mpbid |
⊢ ( 𝜑 → 𝐷 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
28 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
29 |
1 17 2 28 13
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
30 |
27 29
|
fcod |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) |
31 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V ) |
32 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
33 |
32
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
35 |
31 34
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐷 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ ( 𝐷 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) ) |
36 |
30 35
|
mpbird |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
37 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
39 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) |
40 |
37 38 28 39 10
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
41 |
36 40
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
42 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) |
43 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
45 |
17 44
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
46 |
11 43 45
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
47 |
|
ssidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
48 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
49 |
1 2 44 13 11
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
50 |
6
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ) |
51 |
50
|
fveq1d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑅 ) ) = ( ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ‘ ( 0g ‘ 𝑅 ) ) ) |
52 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
53 |
|
eqid |
⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) |
54 |
11 43
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
55 |
3 52 17 53 14 54
|
mplasclf |
⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑈 ) ) |
56 |
55 46
|
fvco3d |
⊢ ( 𝜑 → ( ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐶 ‘ ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) |
57 |
3 14 11
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑈 ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
59 |
58
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
60 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
61 |
3
|
mplassa |
⊢ ( ( ( 𝐼 ∖ 𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg ) |
62 |
14 11 61
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
63 |
|
assalmod |
⊢ ( 𝑈 ∈ AssAlg → 𝑈 ∈ LMod ) |
64 |
62 63
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
65 |
|
assaring |
⊢ ( 𝑈 ∈ AssAlg → 𝑈 ∈ Ring ) |
66 |
62 65
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
67 |
53 60 64 66
|
ascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑈 ) ) |
68 |
59 67
|
eqtrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) |
69 |
68
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝑅 ) ) ) = ( 𝐶 ‘ ( 0g ‘ 𝑈 ) ) ) |
70 |
4 15 62
|
mplsca |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑇 ) ) |
71 |
70
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ 𝑈 ) ) = ( 𝐶 ‘ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
73 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
74 |
3 4 14 15 11
|
selvval2lem1 |
⊢ ( 𝜑 → 𝑇 ∈ AssAlg ) |
75 |
|
assalmod |
⊢ ( 𝑇 ∈ AssAlg → 𝑇 ∈ LMod ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ LMod ) |
77 |
|
assaring |
⊢ ( 𝑇 ∈ AssAlg → 𝑇 ∈ Ring ) |
78 |
74 77
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ Ring ) |
79 |
5 73 76 78
|
ascl0 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) = ( 0g ‘ 𝑇 ) ) |
80 |
|
subrgsubg |
⊢ ( ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) → ran 𝐷 ∈ ( SubGrp ‘ 𝑇 ) ) |
81 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
82 |
7 81
|
subg0 |
⊢ ( ran 𝐷 ∈ ( SubGrp ‘ 𝑇 ) → ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑆 ) ) |
83 |
22 80 82
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑆 ) ) |
84 |
79 83
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) ) = ( 0g ‘ 𝑆 ) ) |
85 |
69 72 84
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( algSc ‘ 𝑈 ) ‘ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑆 ) ) |
86 |
51 56 85
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
87 |
42 46 29 21 47 34 48 49 86
|
fsuppcor |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) finSupp ( 0g ‘ 𝑆 ) ) |
88 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
89 |
8 37 39 88 9
|
mplelbas |
⊢ ( ( 𝐷 ∘ 𝐹 ) ∈ 𝑋 ↔ ( ( 𝐷 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∧ ( 𝐷 ∘ 𝐹 ) finSupp ( 0g ‘ 𝑆 ) ) ) |
90 |
41 87 89
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐹 ) ∈ 𝑋 ) |