Metamath Proof Explorer


Theorem selvval2lem5

Description: The fifth argument passed to evalSub is in the domain (a function I --> E ). (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvval2lem5.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvval2lem5.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2lem5.c 𝐶 = ( algSc ‘ 𝑇 )
selvval2lem5.e 𝐸 = ( Base ‘ 𝑇 )
selvval2lem5.f 𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) )
selvval2lem5.i ( 𝜑𝐼𝑉 )
selvval2lem5.r ( 𝜑𝑅 ∈ CRing )
selvval2lem5.j ( 𝜑𝐽𝐼 )
Assertion selvval2lem5 ( 𝜑𝐹 ∈ ( 𝐸m 𝐼 ) )

Proof

Step Hyp Ref Expression
1 selvval2lem5.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
2 selvval2lem5.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvval2lem5.c 𝐶 = ( algSc ‘ 𝑇 )
4 selvval2lem5.e 𝐸 = ( Base ‘ 𝑇 )
5 selvval2lem5.f 𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) )
6 selvval2lem5.i ( 𝜑𝐼𝑉 )
7 selvval2lem5.r ( 𝜑𝑅 ∈ CRing )
8 selvval2lem5.j ( 𝜑𝐽𝐼 )
9 eqid ( 𝐽 mVar 𝑈 ) = ( 𝐽 mVar 𝑈 )
10 6 8 ssexd ( 𝜑𝐽 ∈ V )
11 10 adantr ( ( 𝜑𝑥𝐽 ) → 𝐽 ∈ V )
12 difexg ( 𝐼𝑉 → ( 𝐼𝐽 ) ∈ V )
13 6 12 syl ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
14 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
15 7 14 syl ( 𝜑𝑅 ∈ Ring )
16 1 mplring ( ( ( 𝐼𝐽 ) ∈ V ∧ 𝑅 ∈ Ring ) → 𝑈 ∈ Ring )
17 13 15 16 syl2anc ( 𝜑𝑈 ∈ Ring )
18 17 adantr ( ( 𝜑𝑥𝐽 ) → 𝑈 ∈ Ring )
19 simpr ( ( 𝜑𝑥𝐽 ) → 𝑥𝐽 )
20 2 9 4 11 18 19 mvrcl ( ( 𝜑𝑥𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 )
21 20 adantlr ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑥𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 )
22 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
23 2 4 22 3 10 17 mplasclf ( 𝜑𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 )
24 23 ad2antrr ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → 𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 )
25 eqid ( ( 𝐼𝐽 ) mVar 𝑅 ) = ( ( 𝐼𝐽 ) mVar 𝑅 )
26 13 ad2antrr ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → ( 𝐼𝐽 ) ∈ V )
27 15 ad2antrr ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → 𝑅 ∈ Ring )
28 eldif ( 𝑥 ∈ ( 𝐼𝐽 ) ↔ ( 𝑥𝐼 ∧ ¬ 𝑥𝐽 ) )
29 28 biimpri ( ( 𝑥𝐼 ∧ ¬ 𝑥𝐽 ) → 𝑥 ∈ ( 𝐼𝐽 ) )
30 29 adantll ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → 𝑥 ∈ ( 𝐼𝐽 ) )
31 1 25 22 26 27 30 mvrcl ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑈 ) )
32 24 31 ffvelrnd ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐸 )
33 21 32 ifclda ( ( 𝜑𝑥𝐼 ) → if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ∈ 𝐸 )
34 33 5 fmptd ( 𝜑𝐹 : 𝐼𝐸 )
35 fvexd ( 𝜑 → ( Base ‘ 𝑇 ) ∈ V )
36 4 35 eqeltrid ( 𝜑𝐸 ∈ V )
37 36 6 elmapd ( 𝜑 → ( 𝐹 ∈ ( 𝐸m 𝐼 ) ↔ 𝐹 : 𝐼𝐸 ) )
38 34 37 mpbird ( 𝜑𝐹 ∈ ( 𝐸m 𝐼 ) )