Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lem5.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
2 |
|
selvval2lem5.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
3 |
|
selvval2lem5.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
4 |
|
selvval2lem5.e |
⊢ 𝐸 = ( Base ‘ 𝑇 ) |
5 |
|
selvval2lem5.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) |
6 |
|
selvval2lem5.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
selvval2lem5.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
|
selvval2lem5.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
9 |
|
eqid |
⊢ ( 𝐽 mVar 𝑈 ) = ( 𝐽 mVar 𝑈 ) |
10 |
6 8
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐽 ∈ V ) |
12 |
6
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
15 |
1
|
mplring |
⊢ ( ( ( 𝐼 ∖ 𝐽 ) ∈ V ∧ 𝑅 ∈ Ring ) → 𝑈 ∈ Ring ) |
16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑈 ∈ Ring ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
19 |
2 9 4 11 17 18
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 ) |
20 |
19
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
22 |
2 4 21 3 10 16
|
mplasclf |
⊢ ( 𝜑 → 𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 ) |
24 |
|
eqid |
⊢ ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) = ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) |
25 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
26 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝑅 ∈ Ring ) |
27 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ↔ ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽 ) ) |
28 |
27
|
biimpri |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) |
29 |
28
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) |
30 |
1 24 21 25 26 29
|
mvrcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑈 ) ) |
31 |
23 30
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝐽 ) → ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐸 ) |
32 |
20 31
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ∈ 𝐸 ) |
33 |
32 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐸 ) |
34 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑇 ) ∈ V ) |
35 |
4 34
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
36 |
35 6
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐸 ↑m 𝐼 ) ↔ 𝐹 : 𝐼 ⟶ 𝐸 ) ) |
37 |
33 36
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐸 ↑m 𝐼 ) ) |