Metamath Proof Explorer


Theorem selvval2lem5

Description: The fifth argument passed to evalSub is in the domain (a function I --> E ). (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvval2lem5.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvval2lem5.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvval2lem5.c 𝐶 = ( algSc ‘ 𝑇 )
selvval2lem5.e 𝐸 = ( Base ‘ 𝑇 )
selvval2lem5.f 𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) )
selvval2lem5.i ( 𝜑𝐼𝑉 )
selvval2lem5.r ( 𝜑𝑅 ∈ CRing )
selvval2lem5.j ( 𝜑𝐽𝐼 )
Assertion selvval2lem5 ( 𝜑𝐹 ∈ ( 𝐸m 𝐼 ) )

Proof

Step Hyp Ref Expression
1 selvval2lem5.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
2 selvval2lem5.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvval2lem5.c 𝐶 = ( algSc ‘ 𝑇 )
4 selvval2lem5.e 𝐸 = ( Base ‘ 𝑇 )
5 selvval2lem5.f 𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) )
6 selvval2lem5.i ( 𝜑𝐼𝑉 )
7 selvval2lem5.r ( 𝜑𝑅 ∈ CRing )
8 selvval2lem5.j ( 𝜑𝐽𝐼 )
9 eqid ( 𝐽 mVar 𝑈 ) = ( 𝐽 mVar 𝑈 )
10 6 8 ssexd ( 𝜑𝐽 ∈ V )
11 10 adantr ( ( 𝜑𝑥𝐽 ) → 𝐽 ∈ V )
12 6 difexd ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
13 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
14 7 13 syl ( 𝜑𝑅 ∈ Ring )
15 1 mplring ( ( ( 𝐼𝐽 ) ∈ V ∧ 𝑅 ∈ Ring ) → 𝑈 ∈ Ring )
16 12 14 15 syl2anc ( 𝜑𝑈 ∈ Ring )
17 16 adantr ( ( 𝜑𝑥𝐽 ) → 𝑈 ∈ Ring )
18 simpr ( ( 𝜑𝑥𝐽 ) → 𝑥𝐽 )
19 2 9 4 11 17 18 mvrcl ( ( 𝜑𝑥𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 )
20 19 adantlr ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑥𝐽 ) → ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) ∈ 𝐸 )
21 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
22 2 4 21 3 10 16 mplasclf ( 𝜑𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 )
23 22 ad2antrr ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → 𝐶 : ( Base ‘ 𝑈 ) ⟶ 𝐸 )
24 eqid ( ( 𝐼𝐽 ) mVar 𝑅 ) = ( ( 𝐼𝐽 ) mVar 𝑅 )
25 12 ad2antrr ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → ( 𝐼𝐽 ) ∈ V )
26 14 ad2antrr ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → 𝑅 ∈ Ring )
27 eldif ( 𝑥 ∈ ( 𝐼𝐽 ) ↔ ( 𝑥𝐼 ∧ ¬ 𝑥𝐽 ) )
28 27 biimpri ( ( 𝑥𝐼 ∧ ¬ 𝑥𝐽 ) → 𝑥 ∈ ( 𝐼𝐽 ) )
29 28 adantll ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → 𝑥 ∈ ( 𝐼𝐽 ) )
30 1 24 21 25 26 29 mvrcl ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑈 ) )
31 23 30 ffvelrnd ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝐽 ) → ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐸 )
32 20 31 ifclda ( ( 𝜑𝑥𝐼 ) → if ( 𝑥𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( 𝐶 ‘ ( ( ( 𝐼𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ∈ 𝐸 )
33 32 5 fmptd ( 𝜑𝐹 : 𝐼𝐸 )
34 fvexd ( 𝜑 → ( Base ‘ 𝑇 ) ∈ V )
35 4 34 eqeltrid ( 𝜑𝐸 ∈ V )
36 35 6 elmapd ( 𝜑 → ( 𝐹 ∈ ( 𝐸m 𝐼 ) ↔ 𝐹 : 𝐼𝐸 ) )
37 33 36 mpbird ( 𝜑𝐹 ∈ ( 𝐸m 𝐼 ) )