Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lem5.u |
|- U = ( ( I \ J ) mPoly R ) |
2 |
|
selvval2lem5.t |
|- T = ( J mPoly U ) |
3 |
|
selvval2lem5.c |
|- C = ( algSc ` T ) |
4 |
|
selvval2lem5.e |
|- E = ( Base ` T ) |
5 |
|
selvval2lem5.f |
|- F = ( x e. I |-> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) ) |
6 |
|
selvval2lem5.i |
|- ( ph -> I e. V ) |
7 |
|
selvval2lem5.r |
|- ( ph -> R e. CRing ) |
8 |
|
selvval2lem5.j |
|- ( ph -> J C_ I ) |
9 |
|
eqid |
|- ( J mVar U ) = ( J mVar U ) |
10 |
6 8
|
ssexd |
|- ( ph -> J e. _V ) |
11 |
10
|
adantr |
|- ( ( ph /\ x e. J ) -> J e. _V ) |
12 |
6
|
difexd |
|- ( ph -> ( I \ J ) e. _V ) |
13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
14 |
7 13
|
syl |
|- ( ph -> R e. Ring ) |
15 |
1
|
mplring |
|- ( ( ( I \ J ) e. _V /\ R e. Ring ) -> U e. Ring ) |
16 |
12 14 15
|
syl2anc |
|- ( ph -> U e. Ring ) |
17 |
16
|
adantr |
|- ( ( ph /\ x e. J ) -> U e. Ring ) |
18 |
|
simpr |
|- ( ( ph /\ x e. J ) -> x e. J ) |
19 |
2 9 4 11 17 18
|
mvrcl |
|- ( ( ph /\ x e. J ) -> ( ( J mVar U ) ` x ) e. E ) |
20 |
19
|
adantlr |
|- ( ( ( ph /\ x e. I ) /\ x e. J ) -> ( ( J mVar U ) ` x ) e. E ) |
21 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
22 |
2 4 21 3 10 16
|
mplasclf |
|- ( ph -> C : ( Base ` U ) --> E ) |
23 |
22
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> C : ( Base ` U ) --> E ) |
24 |
|
eqid |
|- ( ( I \ J ) mVar R ) = ( ( I \ J ) mVar R ) |
25 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> ( I \ J ) e. _V ) |
26 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> R e. Ring ) |
27 |
|
eldif |
|- ( x e. ( I \ J ) <-> ( x e. I /\ -. x e. J ) ) |
28 |
27
|
biimpri |
|- ( ( x e. I /\ -. x e. J ) -> x e. ( I \ J ) ) |
29 |
28
|
adantll |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> x e. ( I \ J ) ) |
30 |
1 24 21 25 26 29
|
mvrcl |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> ( ( ( I \ J ) mVar R ) ` x ) e. ( Base ` U ) ) |
31 |
23 30
|
ffvelrnd |
|- ( ( ( ph /\ x e. I ) /\ -. x e. J ) -> ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) e. E ) |
32 |
20 31
|
ifclda |
|- ( ( ph /\ x e. I ) -> if ( x e. J , ( ( J mVar U ) ` x ) , ( C ` ( ( ( I \ J ) mVar R ) ` x ) ) ) e. E ) |
33 |
32 5
|
fmptd |
|- ( ph -> F : I --> E ) |
34 |
|
fvexd |
|- ( ph -> ( Base ` T ) e. _V ) |
35 |
4 34
|
eqeltrid |
|- ( ph -> E e. _V ) |
36 |
35 6
|
elmapd |
|- ( ph -> ( F e. ( E ^m I ) <-> F : I --> E ) ) |
37 |
33 36
|
mpbird |
|- ( ph -> F e. ( E ^m I ) ) |