Metamath Proof Explorer


Theorem selvval2lem5

Description: The fifth argument passed to evalSub is in the domain (a function I --> E ). (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvval2lem5.u U = I J mPoly R
selvval2lem5.t T = J mPoly U
selvval2lem5.c C = algSc T
selvval2lem5.e E = Base T
selvval2lem5.f F = x I if x J J mVar U x C I J mVar R x
selvval2lem5.i φ I V
selvval2lem5.r φ R CRing
selvval2lem5.j φ J I
Assertion selvval2lem5 φ F E I

Proof

Step Hyp Ref Expression
1 selvval2lem5.u U = I J mPoly R
2 selvval2lem5.t T = J mPoly U
3 selvval2lem5.c C = algSc T
4 selvval2lem5.e E = Base T
5 selvval2lem5.f F = x I if x J J mVar U x C I J mVar R x
6 selvval2lem5.i φ I V
7 selvval2lem5.r φ R CRing
8 selvval2lem5.j φ J I
9 eqid J mVar U = J mVar U
10 6 8 ssexd φ J V
11 10 adantr φ x J J V
12 difexg I V I J V
13 6 12 syl φ I J V
14 crngring R CRing R Ring
15 7 14 syl φ R Ring
16 1 mplring I J V R Ring U Ring
17 13 15 16 syl2anc φ U Ring
18 17 adantr φ x J U Ring
19 simpr φ x J x J
20 2 9 4 11 18 19 mvrcl φ x J J mVar U x E
21 20 adantlr φ x I x J J mVar U x E
22 eqid Base U = Base U
23 2 4 22 3 10 17 mplasclf φ C : Base U E
24 23 ad2antrr φ x I ¬ x J C : Base U E
25 eqid I J mVar R = I J mVar R
26 13 ad2antrr φ x I ¬ x J I J V
27 15 ad2antrr φ x I ¬ x J R Ring
28 eldif x I J x I ¬ x J
29 28 biimpri x I ¬ x J x I J
30 29 adantll φ x I ¬ x J x I J
31 1 25 22 26 27 30 mvrcl φ x I ¬ x J I J mVar R x Base U
32 24 31 ffvelrnd φ x I ¬ x J C I J mVar R x E
33 21 32 ifclda φ x I if x J J mVar U x C I J mVar R x E
34 33 5 fmptd φ F : I E
35 fvexd φ Base T V
36 4 35 eqeltrid φ E V
37 36 6 elmapd φ F E I F : I E
38 34 37 mpbird φ F E I