Step |
Hyp |
Ref |
Expression |
1 |
|
selvval2lemn.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
2 |
|
selvval2lemn.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
3 |
|
selvval2lemn.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
4 |
|
selvval2lemn.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
5 |
|
selvval2lemn.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) |
6 |
|
selvval2lemn.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑆 ) |
7 |
|
selvval2lemn.s |
⊢ 𝑆 = ( 𝑇 ↾s ran 𝐷 ) |
8 |
|
selvval2lemn.x |
⊢ 𝑋 = ( 𝑇 ↑s ( 𝐵 ↑m 𝐼 ) ) |
9 |
|
selvval2lemn.b |
⊢ 𝐵 = ( Base ‘ 𝑇 ) |
10 |
|
selvval2lemn.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
selvval2lemn.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
12 |
|
selvval2lemn.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
13 |
10 12
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
14 |
10
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
15 |
1
|
mplcrng |
⊢ ( ( ( 𝐼 ∖ 𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ CRing ) |
16 |
14 11 15
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
17 |
2
|
mplcrng |
⊢ ( ( 𝐽 ∈ V ∧ 𝑈 ∈ CRing ) → 𝑇 ∈ CRing ) |
18 |
13 16 17
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ CRing ) |
19 |
1 2 3 4 14 13 11
|
selvval2lem3 |
⊢ ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) |
20 |
5 6 7 8 9
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ CRing ∧ ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑋 ) ) |
21 |
10 18 19 20
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑋 ) ) |