Metamath Proof Explorer


Theorem seqval

Description: Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis seqval.1 R=recxV,yVx+1xzV,wVw+˙Fz+1yMFMω
Assertion seqval seqM+˙F=ranR

Proof

Step Hyp Ref Expression
1 seqval.1 R=recxV,yVx+1xzV,wVw+˙Fz+1yMFMω
2 df-ima recxV,yVx+1y+˙Fx+1MFMω=ranrecxV,yVx+1y+˙Fx+1MFMω
3 df-seq seqM+˙F=recxV,yVx+1y+˙Fx+1MFMω
4 eqid V=V
5 fvoveq1 z=xFz+1=Fx+1
6 5 oveq2d z=xw+˙Fz+1=w+˙Fx+1
7 oveq1 w=yw+˙Fx+1=y+˙Fx+1
8 eqid zV,wVw+˙Fz+1=zV,wVw+˙Fz+1
9 ovex y+˙Fx+1V
10 6 7 8 9 ovmpo xVyVxzV,wVw+˙Fz+1y=y+˙Fx+1
11 10 el2v xzV,wVw+˙Fz+1y=y+˙Fx+1
12 11 opeq2i x+1xzV,wVw+˙Fz+1y=x+1y+˙Fx+1
13 4 4 12 mpoeq123i xV,yVx+1xzV,wVw+˙Fz+1y=xV,yVx+1y+˙Fx+1
14 rdgeq1 xV,yVx+1xzV,wVw+˙Fz+1y=xV,yVx+1y+˙Fx+1recxV,yVx+1xzV,wVw+˙Fz+1yMFM=recxV,yVx+1y+˙Fx+1MFM
15 13 14 ax-mp recxV,yVx+1xzV,wVw+˙Fz+1yMFM=recxV,yVx+1y+˙Fx+1MFM
16 15 reseq1i recxV,yVx+1xzV,wVw+˙Fz+1yMFMω=recxV,yVx+1y+˙Fx+1MFMω
17 1 16 eqtri R=recxV,yVx+1y+˙Fx+1MFMω
18 17 rneqi ranR=ranrecxV,yVx+1y+˙Fx+1MFMω
19 2 3 18 3eqtr4i seqM+˙F=ranR