Metamath Proof Explorer


Theorem setccofval

Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C = SetCat U
setcbas.u φ U V
setcco.o · ˙ = comp C
Assertion setccofval φ · ˙ = v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f

Proof

Step Hyp Ref Expression
1 setcbas.c C = SetCat U
2 setcbas.u φ U V
3 setcco.o · ˙ = comp C
4 eqid Hom C = Hom C
5 1 2 4 setchomfval φ Hom C = x U , y U y x
6 eqidd φ v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f = v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
7 1 2 5 6 setcval φ C = Base ndx U Hom ndx Hom C comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
8 catstr Base ndx U Hom ndx Hom C comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f Struct 1 15
9 ccoid comp = Slot comp ndx
10 snsstp3 comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f Base ndx U Hom ndx Hom C comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
11 2 2 xpexd φ U × U V
12 mpoexga U × U V U V v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f V
13 11 2 12 syl2anc φ v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f V
14 7 8 9 10 13 3 strfv3 φ · ˙ = v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f