Metamath Proof Explorer


Theorem setinds2

Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011)

Ref Expression
Hypotheses setinds2.1 x=yφψ
setinds2.2 yxψφ
Assertion setinds2 φ

Proof

Step Hyp Ref Expression
1 setinds2.1 x=yφψ
2 setinds2.2 yxψφ
3 nfv xψ
4 3 1 2 setinds2f φ