Metamath Proof Explorer
		
		
		
		Description:  _E induction schema, using implicit substitution.  (Contributed by Scott Fenton, 10-Mar-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | setinds2.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
					
						|  |  | setinds2.2 | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  →  𝜑 ) | 
				
					|  | Assertion | setinds2 | ⊢  𝜑 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setinds2.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | setinds2.2 | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  →  𝜑 ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 4 | 3 1 2 | setinds2f | ⊢ 𝜑 |