Metamath Proof Explorer


Theorem setinds2

Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011)

Ref Expression
Hypotheses setinds2.1
|- ( x = y -> ( ph <-> ps ) )
setinds2.2
|- ( A. y e. x ps -> ph )
Assertion setinds2
|- ph

Proof

Step Hyp Ref Expression
1 setinds2.1
 |-  ( x = y -> ( ph <-> ps ) )
2 setinds2.2
 |-  ( A. y e. x ps -> ph )
3 nfv
 |-  F/ x ps
4 3 1 2 setinds2f
 |-  ph