Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setinds2.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| setinds2.2 | |- ( A. y e. x ps -> ph ) |
||
| Assertion | setinds2 | |- ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds2.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | setinds2.2 | |- ( A. y e. x ps -> ph ) |
|
| 3 | nfv | |- F/ x ps |
|
| 4 | 3 1 2 | setinds2f | |- ph |