Metamath Proof Explorer


Theorem setinds2f

Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses setinds2f.1
|- F/ x ps
setinds2f.2
|- ( x = y -> ( ph <-> ps ) )
setinds2f.3
|- ( A. y e. x ps -> ph )
Assertion setinds2f
|- ph

Proof

Step Hyp Ref Expression
1 setinds2f.1
 |-  F/ x ps
2 setinds2f.2
 |-  ( x = y -> ( ph <-> ps ) )
3 setinds2f.3
 |-  ( A. y e. x ps -> ph )
4 sbsbc
 |-  ( [ y / x ] ph <-> [. y / x ]. ph )
5 1 2 sbiev
 |-  ( [ y / x ] ph <-> ps )
6 4 5 bitr3i
 |-  ( [. y / x ]. ph <-> ps )
7 6 ralbii
 |-  ( A. y e. x [. y / x ]. ph <-> A. y e. x ps )
8 7 3 sylbi
 |-  ( A. y e. x [. y / x ]. ph -> ph )
9 8 setinds
 |-  ph