Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setinds2f.1 | |- F/ x ps |
|
| setinds2f.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| setinds2f.3 | |- ( A. y e. x ps -> ph ) |
||
| Assertion | setinds2f | |- ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds2f.1 | |- F/ x ps |
|
| 2 | setinds2f.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | setinds2f.3 | |- ( A. y e. x ps -> ph ) |
|
| 4 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
|
| 5 | 1 2 | sbiev | |- ( [ y / x ] ph <-> ps ) |
| 6 | 4 5 | bitr3i | |- ( [. y / x ]. ph <-> ps ) |
| 7 | 6 | ralbii | |- ( A. y e. x [. y / x ]. ph <-> A. y e. x ps ) |
| 8 | 7 3 | sylbi | |- ( A. y e. x [. y / x ]. ph -> ph ) |
| 9 | 8 | setinds | |- ph |