Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setinds2f.1 | |- F/ x ps | |
| setinds2f.2 | |- ( x = y -> ( ph <-> ps ) ) | ||
| setinds2f.3 | |- ( A. y e. x ps -> ph ) | ||
| Assertion | setinds2f | |- ph | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | setinds2f.1 | |- F/ x ps | |
| 2 | setinds2f.2 | |- ( x = y -> ( ph <-> ps ) ) | |
| 3 | setinds2f.3 | |- ( A. y e. x ps -> ph ) | |
| 4 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) | |
| 5 | 1 2 | sbiev | |- ( [ y / x ] ph <-> ps ) | 
| 6 | 4 5 | bitr3i | |- ( [. y / x ]. ph <-> ps ) | 
| 7 | 6 | ralbii | |- ( A. y e. x [. y / x ]. ph <-> A. y e. x ps ) | 
| 8 | 7 3 | sylbi | |- ( A. y e. x [. y / x ]. ph -> ph ) | 
| 9 | 8 | setinds | |- ph |