Metamath Proof Explorer
Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011) (Revised by Mario Carneiro, 11-Dec-2016)
|
|
Ref |
Expression |
|
Hypotheses |
setinds2f.1 |
|
|
|
setinds2f.2 |
|
|
|
setinds2f.3 |
|
|
Assertion |
setinds2f |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
setinds2f.1 |
|
2 |
|
setinds2f.2 |
|
3 |
|
setinds2f.3 |
|
4 |
|
sbsbc |
|
5 |
1 2
|
sbiev |
|
6 |
4 5
|
bitr3i |
|
7 |
6
|
ralbii |
|
8 |
7 3
|
sylbi |
|
9 |
8
|
setinds |
|