Metamath Proof Explorer
		
		
		
		Description:  _E induction schema, using implicit substitution.  (Contributed by Scott Fenton, 10-Mar-2011)  (Revised by Mario Carneiro, 11-Dec-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | setinds2f.1 | ⊢ Ⅎ 𝑥 𝜓 | 
					
						|  |  | setinds2f.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
					
						|  |  | setinds2f.3 | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  →  𝜑 ) | 
				
					|  | Assertion | setinds2f | ⊢  𝜑 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setinds2f.1 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 2 |  | setinds2f.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | setinds2f.3 | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  →  𝜑 ) | 
						
							| 4 |  | sbsbc | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 5 | 1 2 | sbiev | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 6 | 4 5 | bitr3i | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 7 | 6 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 8 | 7 3 | sylbi | ⊢ ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 ) | 
						
							| 9 | 8 | setinds | ⊢ 𝜑 |