| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setinds.1 | ⊢ ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 ) | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 |  | setind | ⊢ ( ∀ 𝑧 ( 𝑧  ⊆  { 𝑥  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∣  𝜑 } )  →  { 𝑥  ∣  𝜑 }  =  V ) | 
						
							| 4 |  | dfss3 | ⊢ ( 𝑧  ⊆  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝑧 𝑦  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 5 |  | df-sbc | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑦  ∈  𝑧 𝑦  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 8 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 9 | 7 8 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 10 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 11 | 9 10 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 12 |  | raleq | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 13 |  | sbceq1a | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 | 12 13 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ↔  ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 15 | 11 14 1 | chvarfv | ⊢ ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 16 | 6 15 | sylbir | ⊢ ( ∀ 𝑦  ∈  𝑧 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 17 | 4 16 | sylbi | ⊢ ( 𝑧  ⊆  { 𝑥  ∣  𝜑 }  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 18 |  | df-sbc | ⊢ ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( 𝑧  ⊆  { 𝑥  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 20 | 3 19 | mpg | ⊢ { 𝑥  ∣  𝜑 }  =  V | 
						
							| 21 | 20 | eqcomi | ⊢ V  =  { 𝑥  ∣  𝜑 } | 
						
							| 22 | 21 | eqabri | ⊢ ( 𝑥  ∈  V  ↔  𝜑 ) | 
						
							| 23 | 2 22 | mpbi | ⊢ 𝜑 |