| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssindif0 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) |
| 2 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 5 |
4
|
spvv |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 6 |
1 5
|
biimtrrid |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ → 𝑦 ∈ 𝐴 ) ) |
| 7 |
|
eldifn |
⊢ ( 𝑦 ∈ ( V ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) |
| 8 |
6 7
|
nsyli |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( V ∖ 𝐴 ) → ¬ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) ) |
| 9 |
8
|
imp |
⊢ ( ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( V ∖ 𝐴 ) ) → ¬ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) |
| 10 |
9
|
nrexdv |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ¬ ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) |
| 11 |
|
zfregs |
⊢ ( ( V ∖ 𝐴 ) ≠ ∅ → ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) |
| 12 |
11
|
necon1bi |
⊢ ( ¬ ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ → ( V ∖ 𝐴 ) = ∅ ) |
| 13 |
10 12
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( V ∖ 𝐴 ) = ∅ ) |
| 14 |
|
vdif0 |
⊢ ( 𝐴 = V ↔ ( V ∖ 𝐴 ) = ∅ ) |
| 15 |
13 14
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐴 = V ) |