| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setinds.1 |  |-  ( A. y e. x [. y / x ]. ph -> ph ) | 
						
							| 2 |  | vex |  |-  x e. _V | 
						
							| 3 |  | setind |  |-  ( A. z ( z C_ { x | ph } -> z e. { x | ph } ) -> { x | ph } = _V ) | 
						
							| 4 |  | dfss3 |  |-  ( z C_ { x | ph } <-> A. y e. z y e. { x | ph } ) | 
						
							| 5 |  | df-sbc |  |-  ( [. y / x ]. ph <-> y e. { x | ph } ) | 
						
							| 6 | 5 | ralbii |  |-  ( A. y e. z [. y / x ]. ph <-> A. y e. z y e. { x | ph } ) | 
						
							| 7 |  | nfcv |  |-  F/_ x z | 
						
							| 8 |  | nfsbc1v |  |-  F/ x [. y / x ]. ph | 
						
							| 9 | 7 8 | nfralw |  |-  F/ x A. y e. z [. y / x ]. ph | 
						
							| 10 |  | nfsbc1v |  |-  F/ x [. z / x ]. ph | 
						
							| 11 | 9 10 | nfim |  |-  F/ x ( A. y e. z [. y / x ]. ph -> [. z / x ]. ph ) | 
						
							| 12 |  | raleq |  |-  ( x = z -> ( A. y e. x [. y / x ]. ph <-> A. y e. z [. y / x ]. ph ) ) | 
						
							| 13 |  | sbceq1a |  |-  ( x = z -> ( ph <-> [. z / x ]. ph ) ) | 
						
							| 14 | 12 13 | imbi12d |  |-  ( x = z -> ( ( A. y e. x [. y / x ]. ph -> ph ) <-> ( A. y e. z [. y / x ]. ph -> [. z / x ]. ph ) ) ) | 
						
							| 15 | 11 14 1 | chvarfv |  |-  ( A. y e. z [. y / x ]. ph -> [. z / x ]. ph ) | 
						
							| 16 | 6 15 | sylbir |  |-  ( A. y e. z y e. { x | ph } -> [. z / x ]. ph ) | 
						
							| 17 | 4 16 | sylbi |  |-  ( z C_ { x | ph } -> [. z / x ]. ph ) | 
						
							| 18 |  | df-sbc |  |-  ( [. z / x ]. ph <-> z e. { x | ph } ) | 
						
							| 19 | 17 18 | sylib |  |-  ( z C_ { x | ph } -> z e. { x | ph } ) | 
						
							| 20 | 3 19 | mpg |  |-  { x | ph } = _V | 
						
							| 21 | 20 | eqcomi |  |-  _V = { x | ph } | 
						
							| 22 | 21 | eqabri |  |-  ( x e. _V <-> ph ) | 
						
							| 23 | 2 22 | mpbi |  |-  ph |