Metamath Proof Explorer


Theorem setinds2f

Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses setinds2f.1 xψ
setinds2f.2 x=yφψ
setinds2f.3 yxψφ
Assertion setinds2f φ

Proof

Step Hyp Ref Expression
1 setinds2f.1 xψ
2 setinds2f.2 x=yφψ
3 setinds2f.3 yxψφ
4 sbsbc yxφ[˙y/x]˙φ
5 1 2 sbiev yxφψ
6 4 5 bitr3i [˙y/x]˙φψ
7 6 ralbii yx[˙y/x]˙φyxψ
8 7 3 sylbi yx[˙y/x]˙φφ
9 8 setinds φ