Metamath Proof Explorer


Theorem setsexstruct2

Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion setsexstruct2 GStructXEVIyGsSetIEStructy

Proof

Step Hyp Ref Expression
1 opex ifI1stXI1stXifI2ndX2ndXIV
2 1 a1i GStructXEVIifI1stXI1stXifI2ndX2ndXIV
3 eqidd GStructXEVIifI1stXI1stXifI2ndX2ndXI=ifI1stXI1stXifI2ndX2ndXI
4 setsstruct2 GStructXEVIifI1stXI1stXifI2ndX2ndXI=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructifI1stXI1stXifI2ndX2ndXI
5 3 4 mpdan GStructXEVIGsSetIEStructifI1stXI1stXifI2ndX2ndXI
6 breq2 y=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructyGsSetIEStructifI1stXI1stXifI2ndX2ndXI
7 2 5 6 spcedv GStructXEVIyGsSetIEStructy