Metamath Proof Explorer


Theorem setsstruct2

Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion setsstruct2 G Struct X E V I Y = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct Y

Proof

Step Hyp Ref Expression
1 isstruct2 G Struct X X × Fun G dom G X
2 elin X × X X ×
3 elxp6 X × X = 1 st X 2 nd X 1 st X 2 nd X
4 eleq1 X = 1 st X 2 nd X X 1 st X 2 nd X
5 4 adantr X = 1 st X 2 nd X 1 st X 2 nd X X 1 st X 2 nd X
6 simp3 1 st X 2 nd X 1 st X 2 nd X I I
7 simp1l 1 st X 2 nd X 1 st X 2 nd X I 1 st X
8 6 7 ifcld 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X
9 8 nnred 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X
10 6 nnred 1 st X 2 nd X 1 st X 2 nd X I I
11 simp1r 1 st X 2 nd X 1 st X 2 nd X I 2 nd X
12 11 6 ifcld 1 st X 2 nd X 1 st X 2 nd X I if I 2 nd X 2 nd X I
13 12 nnred 1 st X 2 nd X 1 st X 2 nd X I if I 2 nd X 2 nd X I
14 nnre 1 st X 1 st X
15 14 adantr 1 st X 2 nd X 1 st X
16 nnre I I
17 15 16 anim12i 1 st X 2 nd X I 1 st X I
18 17 3adant2 1 st X 2 nd X 1 st X 2 nd X I 1 st X I
19 18 ancomd 1 st X 2 nd X 1 st X 2 nd X I I 1 st X
20 min1 I 1 st X if I 1 st X I 1 st X I
21 19 20 syl 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X I
22 nnre 2 nd X 2 nd X
23 22 adantl 1 st X 2 nd X 2 nd X
24 23 16 anim12i 1 st X 2 nd X I 2 nd X I
25 24 3adant2 1 st X 2 nd X 1 st X 2 nd X I 2 nd X I
26 25 ancomd 1 st X 2 nd X 1 st X 2 nd X I I 2 nd X
27 max1 I 2 nd X I if I 2 nd X 2 nd X I
28 26 27 syl 1 st X 2 nd X 1 st X 2 nd X I I if I 2 nd X 2 nd X I
29 9 10 13 21 28 letrd 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
30 df-br if I 1 st X I 1 st X if I 2 nd X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
31 29 30 sylib 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
32 8 12 opelxpd 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
33 31 32 elind 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
34 33 3exp 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
35 34 adantl X = 1 st X 2 nd X 1 st X 2 nd X 1 st X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
36 5 35 sylbid X = 1 st X 2 nd X 1 st X 2 nd X X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
37 3 36 sylbi X × X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
38 37 impcom X X × I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
39 2 38 sylbi X × I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
40 39 3ad2ant1 X × Fun G dom G X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
41 1 40 sylbi G Struct X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
42 41 imp G Struct X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
43 42 3adant2 G Struct X E V I if I 1 st X I 1 st X if I 2 nd X 2 nd X I ×
44 structex G Struct X G V
45 structn0fun G Struct X Fun G
46 44 45 jca G Struct X G V Fun G
47 46 3ad2ant1 G Struct X E V I G V Fun G
48 simp3 G Struct X E V I I
49 simp2 G Struct X E V I E V
50 setsfun0 G V Fun G I E V Fun G sSet I E
51 47 48 49 50 syl12anc G Struct X E V I Fun G sSet I E
52 44 3ad2ant1 G Struct X E V I G V
53 setsdm G V E V dom G sSet I E = dom G I
54 52 49 53 syl2anc G Struct X E V I dom G sSet I E = dom G I
55 fveq2 X = 1 st X 2 nd X X = 1 st X 2 nd X
56 df-ov 1 st X 2 nd X = 1 st X 2 nd X
57 55 56 eqtr4di X = 1 st X 2 nd X X = 1 st X 2 nd X
58 57 sseq2d X = 1 st X 2 nd X dom G X dom G 1 st X 2 nd X
59 58 adantr X = 1 st X 2 nd X 1 st X 2 nd X dom G X dom G 1 st X 2 nd X
60 df-3an 1 st X 2 nd X I 1 st X 2 nd X I
61 nnz 1 st X 1 st X
62 nnz 2 nd X 2 nd X
63 nnz I I
64 61 62 63 3anim123i 1 st X 2 nd X I 1 st X 2 nd X I
65 ssfzunsnext dom G 1 st X 2 nd X 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
66 df-ov if I 1 st X I 1 st X if I 2 nd X 2 nd X I = if I 1 st X I 1 st X if I 2 nd X 2 nd X I
67 65 66 sseqtrdi dom G 1 st X 2 nd X 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
68 64 67 sylan2 dom G 1 st X 2 nd X 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
69 68 ex dom G 1 st X 2 nd X 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
70 60 69 syl5bir dom G 1 st X 2 nd X 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
71 70 expd dom G 1 st X 2 nd X 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
72 71 com12 1 st X 2 nd X dom G 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
73 72 adantl X = 1 st X 2 nd X 1 st X 2 nd X dom G 1 st X 2 nd X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
74 59 73 sylbid X = 1 st X 2 nd X 1 st X 2 nd X dom G X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
75 3 74 sylbi X × dom G X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
76 75 adantl X X × dom G X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
77 2 76 sylbi X × dom G X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
78 77 imp X × dom G X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
79 78 3adant2 X × Fun G dom G X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
80 1 79 sylbi G Struct X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
81 80 imp G Struct X I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
82 81 3adant2 G Struct X E V I dom G I if I 1 st X I 1 st X if I 2 nd X 2 nd X I
83 54 82 eqsstrd G Struct X E V I dom G sSet I E if I 1 st X I 1 st X if I 2 nd X 2 nd X I
84 isstruct2 G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I if I 1 st X I 1 st X if I 2 nd X 2 nd X I × Fun G sSet I E dom G sSet I E if I 1 st X I 1 st X if I 2 nd X 2 nd X I
85 43 51 83 84 syl3anbrc G Struct X E V I G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
86 85 adantr G Struct X E V I Y = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
87 breq2 Y = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct Y G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
88 87 adantl G Struct X E V I Y = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct Y G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
89 86 88 mpbird G Struct X E V I Y = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct Y