Step |
Hyp |
Ref |
Expression |
1 |
|
isstruct2 |
|
2 |
|
elin |
|
3 |
|
elxp6 |
|
4 |
|
eleq1 |
|
5 |
4
|
adantr |
|
6 |
|
simp3 |
|
7 |
|
simp1l |
|
8 |
6 7
|
ifcld |
|
9 |
8
|
nnred |
|
10 |
6
|
nnred |
|
11 |
|
simp1r |
|
12 |
11 6
|
ifcld |
|
13 |
12
|
nnred |
|
14 |
|
nnre |
|
15 |
14
|
adantr |
|
16 |
|
nnre |
|
17 |
15 16
|
anim12i |
|
18 |
17
|
3adant2 |
|
19 |
18
|
ancomd |
|
20 |
|
min1 |
|
21 |
19 20
|
syl |
|
22 |
|
nnre |
|
23 |
22
|
adantl |
|
24 |
23 16
|
anim12i |
|
25 |
24
|
3adant2 |
|
26 |
25
|
ancomd |
|
27 |
|
max1 |
|
28 |
26 27
|
syl |
|
29 |
9 10 13 21 28
|
letrd |
|
30 |
|
df-br |
|
31 |
29 30
|
sylib |
|
32 |
8 12
|
opelxpd |
|
33 |
31 32
|
elind |
|
34 |
33
|
3exp |
|
35 |
34
|
adantl |
|
36 |
5 35
|
sylbid |
|
37 |
3 36
|
sylbi |
|
38 |
37
|
impcom |
|
39 |
2 38
|
sylbi |
|
40 |
39
|
3ad2ant1 |
|
41 |
1 40
|
sylbi |
|
42 |
41
|
imp |
|
43 |
42
|
3adant2 |
|
44 |
|
structex |
|
45 |
|
structn0fun |
|
46 |
44 45
|
jca |
|
47 |
46
|
3ad2ant1 |
|
48 |
|
simp3 |
|
49 |
|
simp2 |
|
50 |
|
setsfun0 |
|
51 |
47 48 49 50
|
syl12anc |
|
52 |
44
|
3ad2ant1 |
|
53 |
|
setsdm |
|
54 |
52 49 53
|
syl2anc |
|
55 |
|
fveq2 |
|
56 |
|
df-ov |
|
57 |
55 56
|
eqtr4di |
|
58 |
57
|
sseq2d |
|
59 |
58
|
adantr |
|
60 |
|
df-3an |
|
61 |
|
nnz |
|
62 |
|
nnz |
|
63 |
|
nnz |
|
64 |
61 62 63
|
3anim123i |
|
65 |
|
ssfzunsnext |
|
66 |
|
df-ov |
|
67 |
65 66
|
sseqtrdi |
|
68 |
64 67
|
sylan2 |
|
69 |
68
|
ex |
|
70 |
60 69
|
syl5bir |
|
71 |
70
|
expd |
|
72 |
71
|
com12 |
|
73 |
72
|
adantl |
|
74 |
59 73
|
sylbid |
|
75 |
3 74
|
sylbi |
|
76 |
75
|
adantl |
|
77 |
2 76
|
sylbi |
|
78 |
77
|
imp |
|
79 |
78
|
3adant2 |
|
80 |
1 79
|
sylbi |
|
81 |
80
|
imp |
|
82 |
81
|
3adant2 |
|
83 |
54 82
|
eqsstrd |
|
84 |
|
isstruct2 |
|
85 |
43 51 83 84
|
syl3anbrc |
|
86 |
85
|
adantr |
|
87 |
|
breq2 |
|
88 |
87
|
adantl |
|
89 |
86 88
|
mpbird |
|