Metamath Proof Explorer


Theorem setsstruct2

Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion setsstruct2 GStructXEVIY=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructY

Proof

Step Hyp Ref Expression
1 isstruct2 GStructXX×FunGdomGX
2 elin X×XX×
3 elxp6 X×X=1stX2ndX1stX2ndX
4 eleq1 X=1stX2ndXX1stX2ndX
5 4 adantr X=1stX2ndX1stX2ndXX1stX2ndX
6 simp3 1stX2ndX1stX2ndXII
7 simp1l 1stX2ndX1stX2ndXI1stX
8 6 7 ifcld 1stX2ndX1stX2ndXIifI1stXI1stX
9 8 nnred 1stX2ndX1stX2ndXIifI1stXI1stX
10 6 nnred 1stX2ndX1stX2ndXII
11 simp1r 1stX2ndX1stX2ndXI2ndX
12 11 6 ifcld 1stX2ndX1stX2ndXIifI2ndX2ndXI
13 12 nnred 1stX2ndX1stX2ndXIifI2ndX2ndXI
14 nnre 1stX1stX
15 14 adantr 1stX2ndX1stX
16 nnre II
17 15 16 anim12i 1stX2ndXI1stXI
18 17 3adant2 1stX2ndX1stX2ndXI1stXI
19 18 ancomd 1stX2ndX1stX2ndXII1stX
20 min1 I1stXifI1stXI1stXI
21 19 20 syl 1stX2ndX1stX2ndXIifI1stXI1stXI
22 nnre 2ndX2ndX
23 22 adantl 1stX2ndX2ndX
24 23 16 anim12i 1stX2ndXI2ndXI
25 24 3adant2 1stX2ndX1stX2ndXI2ndXI
26 25 ancomd 1stX2ndX1stX2ndXII2ndX
27 max1 I2ndXIifI2ndX2ndXI
28 26 27 syl 1stX2ndX1stX2ndXIIifI2ndX2ndXI
29 9 10 13 21 28 letrd 1stX2ndX1stX2ndXIifI1stXI1stXifI2ndX2ndXI
30 df-br ifI1stXI1stXifI2ndX2ndXIifI1stXI1stXifI2ndX2ndXI
31 29 30 sylib 1stX2ndX1stX2ndXIifI1stXI1stXifI2ndX2ndXI
32 8 12 opelxpd 1stX2ndX1stX2ndXIifI1stXI1stXifI2ndX2ndXI×
33 31 32 elind 1stX2ndX1stX2ndXIifI1stXI1stXifI2ndX2ndXI×
34 33 3exp 1stX2ndX1stX2ndXIifI1stXI1stXifI2ndX2ndXI×
35 34 adantl X=1stX2ndX1stX2ndX1stX2ndXIifI1stXI1stXifI2ndX2ndXI×
36 5 35 sylbid X=1stX2ndX1stX2ndXXIifI1stXI1stXifI2ndX2ndXI×
37 3 36 sylbi X×XIifI1stXI1stXifI2ndX2ndXI×
38 37 impcom XX×IifI1stXI1stXifI2ndX2ndXI×
39 2 38 sylbi X×IifI1stXI1stXifI2ndX2ndXI×
40 39 3ad2ant1 X×FunGdomGXIifI1stXI1stXifI2ndX2ndXI×
41 1 40 sylbi GStructXIifI1stXI1stXifI2ndX2ndXI×
42 41 imp GStructXIifI1stXI1stXifI2ndX2ndXI×
43 42 3adant2 GStructXEVIifI1stXI1stXifI2ndX2ndXI×
44 structex GStructXGV
45 structn0fun GStructXFunG
46 44 45 jca GStructXGVFunG
47 46 3ad2ant1 GStructXEVIGVFunG
48 simp3 GStructXEVII
49 simp2 GStructXEVIEV
50 setsfun0 GVFunGIEVFunGsSetIE
51 47 48 49 50 syl12anc GStructXEVIFunGsSetIE
52 44 3ad2ant1 GStructXEVIGV
53 setsdm GVEVdomGsSetIE=domGI
54 52 49 53 syl2anc GStructXEVIdomGsSetIE=domGI
55 fveq2 X=1stX2ndXX=1stX2ndX
56 df-ov 1stX2ndX=1stX2ndX
57 55 56 eqtr4di X=1stX2ndXX=1stX2ndX
58 57 sseq2d X=1stX2ndXdomGXdomG1stX2ndX
59 58 adantr X=1stX2ndX1stX2ndXdomGXdomG1stX2ndX
60 df-3an 1stX2ndXI1stX2ndXI
61 nnz 1stX1stX
62 nnz 2ndX2ndX
63 nnz II
64 61 62 63 3anim123i 1stX2ndXI1stX2ndXI
65 ssfzunsnext domG1stX2ndX1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
66 df-ov ifI1stXI1stXifI2ndX2ndXI=ifI1stXI1stXifI2ndX2ndXI
67 65 66 sseqtrdi domG1stX2ndX1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
68 64 67 sylan2 domG1stX2ndX1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
69 68 ex domG1stX2ndX1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
70 60 69 biimtrrid domG1stX2ndX1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
71 70 expd domG1stX2ndX1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
72 71 com12 1stX2ndXdomG1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
73 72 adantl X=1stX2ndX1stX2ndXdomG1stX2ndXIdomGIifI1stXI1stXifI2ndX2ndXI
74 59 73 sylbid X=1stX2ndX1stX2ndXdomGXIdomGIifI1stXI1stXifI2ndX2ndXI
75 3 74 sylbi X×domGXIdomGIifI1stXI1stXifI2ndX2ndXI
76 75 adantl XX×domGXIdomGIifI1stXI1stXifI2ndX2ndXI
77 2 76 sylbi X×domGXIdomGIifI1stXI1stXifI2ndX2ndXI
78 77 imp X×domGXIdomGIifI1stXI1stXifI2ndX2ndXI
79 78 3adant2 X×FunGdomGXIdomGIifI1stXI1stXifI2ndX2ndXI
80 1 79 sylbi GStructXIdomGIifI1stXI1stXifI2ndX2ndXI
81 80 imp GStructXIdomGIifI1stXI1stXifI2ndX2ndXI
82 81 3adant2 GStructXEVIdomGIifI1stXI1stXifI2ndX2ndXI
83 54 82 eqsstrd GStructXEVIdomGsSetIEifI1stXI1stXifI2ndX2ndXI
84 isstruct2 GsSetIEStructifI1stXI1stXifI2ndX2ndXIifI1stXI1stXifI2ndX2ndXI×FunGsSetIEdomGsSetIEifI1stXI1stXifI2ndX2ndXI
85 43 51 83 84 syl3anbrc GStructXEVIGsSetIEStructifI1stXI1stXifI2ndX2ndXI
86 85 adantr GStructXEVIY=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructifI1stXI1stXifI2ndX2ndXI
87 breq2 Y=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructYGsSetIEStructifI1stXI1stXifI2ndX2ndXI
88 87 adantl GStructXEVIY=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructYGsSetIEStructifI1stXI1stXifI2ndX2ndXI
89 86 88 mpbird GStructXEVIY=ifI1stXI1stXifI2ndX2ndXIGsSetIEStructY