Metamath Proof Explorer


Theorem setsdm

Description: The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021)

Ref Expression
Assertion setsdm GVEWdomGsSetIE=domGI

Proof

Step Hyp Ref Expression
1 opex IEV
2 1 a1i EWIEV
3 setsvalg GVIEVGsSetIE=GVdomIEIE
4 2 3 sylan2 GVEWGsSetIE=GVdomIEIE
5 4 dmeqd GVEWdomGsSetIE=domGVdomIEIE
6 dmun domGVdomIEIE=domGVdomIEdomIE
7 dmres domGVdomIE=VdomIEdomG
8 dmsnopg EWdomIE=I
9 8 adantl GVEWdomIE=I
10 9 difeq2d GVEWVdomIE=VI
11 10 ineq1d GVEWVdomIEdomG=VIdomG
12 incom VIdomG=domGVI
13 invdif domGVI=domGI
14 12 13 eqtri VIdomG=domGI
15 11 14 eqtrdi GVEWVdomIEdomG=domGI
16 7 15 eqtrid GVEWdomGVdomIE=domGI
17 16 9 uneq12d GVEWdomGVdomIEdomIE=domGII
18 6 17 eqtrid GVEWdomGVdomIEIE=domGII
19 undif1 domGII=domGI
20 19 a1i GVEWdomGII=domGI
21 5 18 20 3eqtrd GVEWdomGsSetIE=domGI