| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isstruct2 |
|- ( G Struct X <-> ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( ... ` X ) ) ) |
| 2 |
|
elin |
|- ( X e. ( <_ i^i ( NN X. NN ) ) <-> ( X e. <_ /\ X e. ( NN X. NN ) ) ) |
| 3 |
|
elxp6 |
|- ( X e. ( NN X. NN ) <-> ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) ) |
| 4 |
|
eleq1 |
|- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( X e. <_ <-> <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ ) ) |
| 5 |
4
|
adantr |
|- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( X e. <_ <-> <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ ) ) |
| 6 |
|
simp3 |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> I e. NN ) |
| 7 |
|
simp1l |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( 1st ` X ) e. NN ) |
| 8 |
6 7
|
ifcld |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) e. NN ) |
| 9 |
8
|
nnred |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) e. RR ) |
| 10 |
6
|
nnred |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> I e. RR ) |
| 11 |
|
simp1r |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( 2nd ` X ) e. NN ) |
| 12 |
11 6
|
ifcld |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) e. NN ) |
| 13 |
12
|
nnred |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) e. RR ) |
| 14 |
|
nnre |
|- ( ( 1st ` X ) e. NN -> ( 1st ` X ) e. RR ) |
| 15 |
14
|
adantr |
|- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( 1st ` X ) e. RR ) |
| 16 |
|
nnre |
|- ( I e. NN -> I e. RR ) |
| 17 |
15 16
|
anim12i |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) -> ( ( 1st ` X ) e. RR /\ I e. RR ) ) |
| 18 |
17
|
3adant2 |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( ( 1st ` X ) e. RR /\ I e. RR ) ) |
| 19 |
18
|
ancomd |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( I e. RR /\ ( 1st ` X ) e. RR ) ) |
| 20 |
|
min1 |
|- ( ( I e. RR /\ ( 1st ` X ) e. RR ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ I ) |
| 21 |
19 20
|
syl |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ I ) |
| 22 |
|
nnre |
|- ( ( 2nd ` X ) e. NN -> ( 2nd ` X ) e. RR ) |
| 23 |
22
|
adantl |
|- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( 2nd ` X ) e. RR ) |
| 24 |
23 16
|
anim12i |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) -> ( ( 2nd ` X ) e. RR /\ I e. RR ) ) |
| 25 |
24
|
3adant2 |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( ( 2nd ` X ) e. RR /\ I e. RR ) ) |
| 26 |
25
|
ancomd |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( I e. RR /\ ( 2nd ` X ) e. RR ) ) |
| 27 |
|
max1 |
|- ( ( I e. RR /\ ( 2nd ` X ) e. RR ) -> I <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) |
| 28 |
26 27
|
syl |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> I <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) |
| 29 |
9 10 13 21 28
|
letrd |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) |
| 30 |
|
df-br |
|- ( if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) <-> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. <_ ) |
| 31 |
29 30
|
sylib |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. <_ ) |
| 32 |
8 12
|
opelxpd |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( NN X. NN ) ) |
| 33 |
31 32
|
elind |
|- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 34 |
33
|
3exp |
|- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 35 |
34
|
adantl |
|- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 36 |
5 35
|
sylbid |
|- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( X e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 37 |
3 36
|
sylbi |
|- ( X e. ( NN X. NN ) -> ( X e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 38 |
37
|
impcom |
|- ( ( X e. <_ /\ X e. ( NN X. NN ) ) -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 39 |
2 38
|
sylbi |
|- ( X e. ( <_ i^i ( NN X. NN ) ) -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( ... ` X ) ) -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 41 |
1 40
|
sylbi |
|- ( G Struct X -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 42 |
41
|
imp |
|- ( ( G Struct X /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 43 |
42
|
3adant2 |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 44 |
|
structex |
|- ( G Struct X -> G e. _V ) |
| 45 |
|
structn0fun |
|- ( G Struct X -> Fun ( G \ { (/) } ) ) |
| 46 |
44 45
|
jca |
|- ( G Struct X -> ( G e. _V /\ Fun ( G \ { (/) } ) ) ) |
| 47 |
46
|
3ad2ant1 |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( G e. _V /\ Fun ( G \ { (/) } ) ) ) |
| 48 |
|
simp3 |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> I e. NN ) |
| 49 |
|
simp2 |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> E e. V ) |
| 50 |
|
setsfun0 |
|- ( ( ( G e. _V /\ Fun ( G \ { (/) } ) ) /\ ( I e. NN /\ E e. V ) ) -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |
| 51 |
47 48 49 50
|
syl12anc |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |
| 52 |
44
|
3ad2ant1 |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> G e. _V ) |
| 53 |
|
setsdm |
|- ( ( G e. _V /\ E e. V ) -> dom ( G sSet <. I , E >. ) = ( dom G u. { I } ) ) |
| 54 |
52 49 53
|
syl2anc |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> dom ( G sSet <. I , E >. ) = ( dom G u. { I } ) ) |
| 55 |
|
fveq2 |
|- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( ... ` X ) = ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) ) |
| 56 |
|
df-ov |
|- ( ( 1st ` X ) ... ( 2nd ` X ) ) = ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 57 |
55 56
|
eqtr4di |
|- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( ... ` X ) = ( ( 1st ` X ) ... ( 2nd ` X ) ) ) |
| 58 |
57
|
sseq2d |
|- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( dom G C_ ( ... ` X ) <-> dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) ) ) |
| 59 |
58
|
adantr |
|- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( dom G C_ ( ... ` X ) <-> dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) ) ) |
| 60 |
|
df-3an |
|- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) <-> ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) ) |
| 61 |
|
nnz |
|- ( ( 1st ` X ) e. NN -> ( 1st ` X ) e. ZZ ) |
| 62 |
|
nnz |
|- ( ( 2nd ` X ) e. NN -> ( 2nd ` X ) e. ZZ ) |
| 63 |
|
nnz |
|- ( I e. NN -> I e. ZZ ) |
| 64 |
61 62 63
|
3anim123i |
|- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) -> ( ( 1st ` X ) e. ZZ /\ ( 2nd ` X ) e. ZZ /\ I e. ZZ ) ) |
| 65 |
|
ssfzunsnext |
|- ( ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) /\ ( ( 1st ` X ) e. ZZ /\ ( 2nd ` X ) e. ZZ /\ I e. ZZ ) ) -> ( dom G u. { I } ) C_ ( if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) ... if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) ) |
| 66 |
|
df-ov |
|- ( if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) ... if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) = ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
| 67 |
65 66
|
sseqtrdi |
|- ( ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) /\ ( ( 1st ` X ) e. ZZ /\ ( 2nd ` X ) e. ZZ /\ I e. ZZ ) ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 68 |
64 67
|
sylan2 |
|- ( ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 69 |
68
|
ex |
|- ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 70 |
60 69
|
biimtrrid |
|- ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 71 |
70
|
expd |
|- ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 72 |
71
|
com12 |
|- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 73 |
72
|
adantl |
|- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 74 |
59 73
|
sylbid |
|- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 75 |
3 74
|
sylbi |
|- ( X e. ( NN X. NN ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 76 |
75
|
adantl |
|- ( ( X e. <_ /\ X e. ( NN X. NN ) ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 77 |
2 76
|
sylbi |
|- ( X e. ( <_ i^i ( NN X. NN ) ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 78 |
77
|
imp |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ dom G C_ ( ... ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 79 |
78
|
3adant2 |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( ... ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 80 |
1 79
|
sylbi |
|- ( G Struct X -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 81 |
80
|
imp |
|- ( ( G Struct X /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 82 |
81
|
3adant2 |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 83 |
54 82
|
eqsstrd |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> dom ( G sSet <. I , E >. ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 84 |
|
isstruct2 |
|- ( ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. <-> ( <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( ( G sSet <. I , E >. ) \ { (/) } ) /\ dom ( G sSet <. I , E >. ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 85 |
43 51 83 84
|
syl3anbrc |
|- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
| 86 |
85
|
adantr |
|- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
| 87 |
|
breq2 |
|- ( Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. -> ( ( G sSet <. I , E >. ) Struct Y <-> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 88 |
87
|
adantl |
|- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( ( G sSet <. I , E >. ) Struct Y <-> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 89 |
86 88
|
mpbird |
|- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct Y ) |