| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brstruct |
|- Rel Struct |
| 2 |
1
|
brrelex12i |
|- ( F Struct X -> ( F e. _V /\ X e. _V ) ) |
| 3 |
|
ssun1 |
|- F C_ ( F u. { (/) } ) |
| 4 |
|
undif1 |
|- ( ( F \ { (/) } ) u. { (/) } ) = ( F u. { (/) } ) |
| 5 |
3 4
|
sseqtrri |
|- F C_ ( ( F \ { (/) } ) u. { (/) } ) |
| 6 |
|
simp2 |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> Fun ( F \ { (/) } ) ) |
| 7 |
6
|
funfnd |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> ( F \ { (/) } ) Fn dom ( F \ { (/) } ) ) |
| 8 |
|
elinel2 |
|- ( X e. ( <_ i^i ( NN X. NN ) ) -> X e. ( NN X. NN ) ) |
| 9 |
|
1st2nd2 |
|- ( X e. ( NN X. NN ) -> X = <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 10 |
8 9
|
syl |
|- ( X e. ( <_ i^i ( NN X. NN ) ) -> X = <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> X = <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 12 |
11
|
fveq2d |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> ( ... ` X ) = ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) ) |
| 13 |
|
df-ov |
|- ( ( 1st ` X ) ... ( 2nd ` X ) ) = ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 14 |
|
fzfi |
|- ( ( 1st ` X ) ... ( 2nd ` X ) ) e. Fin |
| 15 |
13 14
|
eqeltrri |
|- ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) e. Fin |
| 16 |
12 15
|
eqeltrdi |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> ( ... ` X ) e. Fin ) |
| 17 |
|
difss |
|- ( F \ { (/) } ) C_ F |
| 18 |
|
dmss |
|- ( ( F \ { (/) } ) C_ F -> dom ( F \ { (/) } ) C_ dom F ) |
| 19 |
17 18
|
ax-mp |
|- dom ( F \ { (/) } ) C_ dom F |
| 20 |
|
simp3 |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> dom F C_ ( ... ` X ) ) |
| 21 |
19 20
|
sstrid |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> dom ( F \ { (/) } ) C_ ( ... ` X ) ) |
| 22 |
16 21
|
ssfid |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> dom ( F \ { (/) } ) e. Fin ) |
| 23 |
|
fnfi |
|- ( ( ( F \ { (/) } ) Fn dom ( F \ { (/) } ) /\ dom ( F \ { (/) } ) e. Fin ) -> ( F \ { (/) } ) e. Fin ) |
| 24 |
7 22 23
|
syl2anc |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> ( F \ { (/) } ) e. Fin ) |
| 25 |
|
p0ex |
|- { (/) } e. _V |
| 26 |
|
unexg |
|- ( ( ( F \ { (/) } ) e. Fin /\ { (/) } e. _V ) -> ( ( F \ { (/) } ) u. { (/) } ) e. _V ) |
| 27 |
24 25 26
|
sylancl |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> ( ( F \ { (/) } ) u. { (/) } ) e. _V ) |
| 28 |
|
ssexg |
|- ( ( F C_ ( ( F \ { (/) } ) u. { (/) } ) /\ ( ( F \ { (/) } ) u. { (/) } ) e. _V ) -> F e. _V ) |
| 29 |
5 27 28
|
sylancr |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> F e. _V ) |
| 30 |
|
elex |
|- ( X e. ( <_ i^i ( NN X. NN ) ) -> X e. _V ) |
| 31 |
30
|
3ad2ant1 |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> X e. _V ) |
| 32 |
29 31
|
jca |
|- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) -> ( F e. _V /\ X e. _V ) ) |
| 33 |
|
simpr |
|- ( ( f = F /\ x = X ) -> x = X ) |
| 34 |
33
|
eleq1d |
|- ( ( f = F /\ x = X ) -> ( x e. ( <_ i^i ( NN X. NN ) ) <-> X e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 35 |
|
simpl |
|- ( ( f = F /\ x = X ) -> f = F ) |
| 36 |
35
|
difeq1d |
|- ( ( f = F /\ x = X ) -> ( f \ { (/) } ) = ( F \ { (/) } ) ) |
| 37 |
36
|
funeqd |
|- ( ( f = F /\ x = X ) -> ( Fun ( f \ { (/) } ) <-> Fun ( F \ { (/) } ) ) ) |
| 38 |
35
|
dmeqd |
|- ( ( f = F /\ x = X ) -> dom f = dom F ) |
| 39 |
33
|
fveq2d |
|- ( ( f = F /\ x = X ) -> ( ... ` x ) = ( ... ` X ) ) |
| 40 |
38 39
|
sseq12d |
|- ( ( f = F /\ x = X ) -> ( dom f C_ ( ... ` x ) <-> dom F C_ ( ... ` X ) ) ) |
| 41 |
34 37 40
|
3anbi123d |
|- ( ( f = F /\ x = X ) -> ( ( x e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( f \ { (/) } ) /\ dom f C_ ( ... ` x ) ) <-> ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) ) ) |
| 42 |
|
df-struct |
|- Struct = { <. f , x >. | ( x e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( f \ { (/) } ) /\ dom f C_ ( ... ` x ) ) } |
| 43 |
41 42
|
brabga |
|- ( ( F e. _V /\ X e. _V ) -> ( F Struct X <-> ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) ) ) |
| 44 |
2 32 43
|
pm5.21nii |
|- ( F Struct X <-> ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` X ) ) ) |