| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brstruct |
⊢ Rel Struct |
| 2 |
1
|
brrelex12i |
⊢ ( 𝐹 Struct 𝑋 → ( 𝐹 ∈ V ∧ 𝑋 ∈ V ) ) |
| 3 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ { ∅ } ) |
| 4 |
|
undif1 |
⊢ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝐹 ∪ { ∅ } ) |
| 5 |
3 4
|
sseqtrri |
⊢ 𝐹 ⊆ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) |
| 6 |
|
simp2 |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → Fun ( 𝐹 ∖ { ∅ } ) ) |
| 7 |
6
|
funfnd |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( 𝐹 ∖ { ∅ } ) Fn dom ( 𝐹 ∖ { ∅ } ) ) |
| 8 |
|
elinel2 |
⊢ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) → 𝑋 ∈ ( ℕ × ℕ ) ) |
| 9 |
|
1st2nd2 |
⊢ ( 𝑋 ∈ ( ℕ × ℕ ) → 𝑋 = 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) → 𝑋 = 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → 𝑋 = 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( ... ‘ 𝑋 ) = ( ... ‘ 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) ) |
| 13 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑋 ) ... ( 2nd ‘ 𝑋 ) ) = ( ... ‘ 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) |
| 14 |
|
fzfi |
⊢ ( ( 1st ‘ 𝑋 ) ... ( 2nd ‘ 𝑋 ) ) ∈ Fin |
| 15 |
13 14
|
eqeltrri |
⊢ ( ... ‘ 〈 ( 1st ‘ 𝑋 ) , ( 2nd ‘ 𝑋 ) 〉 ) ∈ Fin |
| 16 |
12 15
|
eqeltrdi |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( ... ‘ 𝑋 ) ∈ Fin ) |
| 17 |
|
difss |
⊢ ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 |
| 18 |
|
dmss |
⊢ ( ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 → dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 ) |
| 19 |
17 18
|
ax-mp |
⊢ dom ( 𝐹 ∖ { ∅ } ) ⊆ dom 𝐹 |
| 20 |
|
simp3 |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) |
| 21 |
19 20
|
sstrid |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → dom ( 𝐹 ∖ { ∅ } ) ⊆ ( ... ‘ 𝑋 ) ) |
| 22 |
16 21
|
ssfid |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → dom ( 𝐹 ∖ { ∅ } ) ∈ Fin ) |
| 23 |
|
fnfi |
⊢ ( ( ( 𝐹 ∖ { ∅ } ) Fn dom ( 𝐹 ∖ { ∅ } ) ∧ dom ( 𝐹 ∖ { ∅ } ) ∈ Fin ) → ( 𝐹 ∖ { ∅ } ) ∈ Fin ) |
| 24 |
7 22 23
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( 𝐹 ∖ { ∅ } ) ∈ Fin ) |
| 25 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 26 |
|
unexg |
⊢ ( ( ( 𝐹 ∖ { ∅ } ) ∈ Fin ∧ { ∅ } ∈ V ) → ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) |
| 27 |
24 25 26
|
sylancl |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) |
| 28 |
|
ssexg |
⊢ ( ( 𝐹 ⊆ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∧ ( ( 𝐹 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) → 𝐹 ∈ V ) |
| 29 |
5 27 28
|
sylancr |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → 𝐹 ∈ V ) |
| 30 |
|
elex |
⊢ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) → 𝑋 ∈ V ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → 𝑋 ∈ V ) |
| 32 |
29 31
|
jca |
⊢ ( ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) → ( 𝐹 ∈ V ∧ 𝑋 ∈ V ) ) |
| 33 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
| 34 |
33
|
eleq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ↔ 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ) ) |
| 35 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → 𝑓 = 𝐹 ) |
| 36 |
35
|
difeq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( 𝑓 ∖ { ∅ } ) = ( 𝐹 ∖ { ∅ } ) ) |
| 37 |
36
|
funeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( Fun ( 𝑓 ∖ { ∅ } ) ↔ Fun ( 𝐹 ∖ { ∅ } ) ) ) |
| 38 |
35
|
dmeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → dom 𝑓 = dom 𝐹 ) |
| 39 |
33
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( ... ‘ 𝑥 ) = ( ... ‘ 𝑋 ) ) |
| 40 |
38 39
|
sseq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( dom 𝑓 ⊆ ( ... ‘ 𝑥 ) ↔ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) |
| 41 |
34 37 40
|
3anbi123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) → ( ( 𝑥 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝑓 ∖ { ∅ } ) ∧ dom 𝑓 ⊆ ( ... ‘ 𝑥 ) ) ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) ) |
| 42 |
|
df-struct |
⊢ Struct = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑥 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝑓 ∖ { ∅ } ) ∧ dom 𝑓 ⊆ ( ... ‘ 𝑥 ) ) } |
| 43 |
41 42
|
brabga |
⊢ ( ( 𝐹 ∈ V ∧ 𝑋 ∈ V ) → ( 𝐹 Struct 𝑋 ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) ) |
| 44 |
2 32 43
|
pm5.21nii |
⊢ ( 𝐹 Struct 𝑋 ↔ ( 𝑋 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 𝑋 ) ) ) |