Metamath Proof Explorer


Theorem simplld

Description: Deduction form of simpll , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simplld.1 φψχθ
Assertion simplld φψ

Proof

Step Hyp Ref Expression
1 simplld.1 φψχθ
2 1 simpld φψχ
3 2 simpld φψ