Metamath Proof Explorer


Theorem sinhalfpip

Description: The sine of _pi / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sinhalfpip Asinπ2+A=cosA

Proof

Step Hyp Ref Expression
1 halfpire π2
2 1 recni π2
3 sinadd π2Asinπ2+A=sinπ2cosA+cosπ2sinA
4 2 3 mpan Asinπ2+A=sinπ2cosA+cosπ2sinA
5 sinhalfpi sinπ2=1
6 5 oveq1i sinπ2cosA=1cosA
7 coscl AcosA
8 7 mullidd A1cosA=cosA
9 6 8 eqtrid Asinπ2cosA=cosA
10 coshalfpi cosπ2=0
11 10 oveq1i cosπ2sinA=0sinA
12 sincl AsinA
13 12 mul02d A0sinA=0
14 11 13 eqtrid Acosπ2sinA=0
15 9 14 oveq12d Asinπ2cosA+cosπ2sinA=cosA+0
16 7 addridd AcosA+0=cosA
17 4 15 16 3eqtrd Asinπ2+A=cosA