Metamath Proof Explorer


Theorem sinppi

Description: Sine of a number plus _pi . (Contributed by NM, 10-Aug-2008)

Ref Expression
Assertion sinppi AsinA+π=sinA

Proof

Step Hyp Ref Expression
1 picn π
2 sinadd AπsinA+π=sinAcosπ+cosAsinπ
3 1 2 mpan2 AsinA+π=sinAcosπ+cosAsinπ
4 cospi cosπ=1
5 4 oveq2i sinAcosπ=sinA-1
6 sincl AsinA
7 neg1cn 1
8 mulcom sinA1sinA-1=-1sinA
9 7 8 mpan2 sinAsinA-1=-1sinA
10 mulm1 sinA-1sinA=sinA
11 9 10 eqtrd sinAsinA-1=sinA
12 6 11 syl AsinA-1=sinA
13 5 12 eqtrid AsinAcosπ=sinA
14 sinpi sinπ=0
15 14 oveq2i cosAsinπ=cosA0
16 coscl AcosA
17 16 mul01d AcosA0=0
18 15 17 eqtrid AcosAsinπ=0
19 13 18 oveq12d AsinAcosπ+cosAsinπ=-sinA+0
20 6 negcld AsinA
21 20 addridd A-sinA+0=sinA
22 19 21 eqtrd AsinAcosπ+cosAsinπ=sinA
23 3 22 eqtrd AsinA+π=sinA