Metamath Proof Explorer


Theorem sinval

Description: Value of the sine function. (Contributed by NM, 14-Mar-2005) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion sinval AsinA=eiAeiA2i

Proof

Step Hyp Ref Expression
1 oveq2 x=Aix=iA
2 1 fveq2d x=Aeix=eiA
3 oveq2 x=Aix=iA
4 3 fveq2d x=Aeix=eiA
5 2 4 oveq12d x=Aeixeix=eiAeiA
6 5 oveq1d x=Aeixeix2i=eiAeiA2i
7 df-sin sin=xeixeix2i
8 ovex eiAeiA2iV
9 6 7 8 fvmpt AsinA=eiAeiA2i