Metamath Proof Explorer


Theorem slmdass

Description: Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvacl.v V = Base W
slmdvacl.a + ˙ = + W
Assertion slmdass W SLMod X V Y V Z V X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 slmdvacl.v V = Base W
2 slmdvacl.a + ˙ = + W
3 slmdmnd W SLMod W Mnd
4 1 2 mndass W Mnd X V Y V Z V X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z
5 3 4 sylan W SLMod X V Y V Z V X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z