Metamath Proof Explorer


Theorem sltaddsub2d

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1 φANo
sltsubadd.2 φBNo
sltsubadd.3 φCNo
Assertion sltaddsub2d Could not format assertion : No typesetting found for |- ( ph -> ( ( A +s B ) B

Proof

Step Hyp Ref Expression
1 sltsubadd.1 φANo
2 sltsubadd.2 φBNo
3 sltsubadd.3 φCNo
4 1 2 addscomd Could not format ( ph -> ( A +s B ) = ( B +s A ) ) : No typesetting found for |- ( ph -> ( A +s B ) = ( B +s A ) ) with typecode |-
5 4 breq1d Could not format ( ph -> ( ( A +s B ) ( B +s A ) ( ( A +s B ) ( B +s A )
6 2 1 3 sltaddsubd Could not format ( ph -> ( ( B +s A ) B ( ( B +s A ) B
7 5 6 bitrd Could not format ( ph -> ( ( A +s B ) B ( ( A +s B ) B