Metamath Proof Explorer


Theorem sltdivmul2wd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 φANo
sltdivmulwd.2 φBNo
sltdivmulwd.3 φCNo
sltdivmulwd.4 φ0s<sC
sltdivmulwd.5 φxNoCsx=1s
Assertion sltdivmul2wd φA/suC<sBA<sBsC

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 φANo
2 sltdivmulwd.2 φBNo
3 sltdivmulwd.3 φCNo
4 sltdivmulwd.4 φ0s<sC
5 sltdivmulwd.5 φxNoCsx=1s
6 1 2 3 4 5 sltdivmulwd φA/suC<sBA<sCsB
7 2 3 mulscomd φBsC=CsB
8 7 breq2d φA<sBsCA<sCsB
9 6 8 bitr4d φA/suC<sBA<sBsC