Metamath Proof Explorer


Theorem sltmulneg2d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1 φANo
sltmulneg.2 φBNo
sltmulneg.3 φCNo
sltmulneg.4 φC<s0s
Assertion sltmulneg2d φA<sBCsB<sCsA

Proof

Step Hyp Ref Expression
1 sltmulneg.1 φANo
2 sltmulneg.2 φBNo
3 sltmulneg.3 φCNo
4 sltmulneg.4 φC<s0s
5 1 2 3 4 sltmulneg1d φA<sBBsC<sAsC
6 2 3 mulscomd φBsC=CsB
7 1 3 mulscomd φAsC=CsA
8 6 7 breq12d φBsC<sAsCCsB<sCsA
9 5 8 bitrd φA<sBCsB<sCsA